Infinitely many small solutions for the p(x)-Laplacian operator with nonlinear boundary conditions

被引:0
作者
Sihua Liang
Jihui Zhang
机构
[1] Changchun Normal University,College of Mathematics
[2] Nanjing Normal University,Institute of Mathematics, School of Mathematical Science
来源
Annali di Matematica Pura ed Applicata | 2013年 / 192卷
关键词
(; )-Laplacian; Generalized Lebesgue-Sobolev spaces; Nonlinear boundary conditions; Concentration-compactness principle; 35J60; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of infinitely many small solutions to the following quasilinear elliptic equation −Δp(x)u +  |u|p(x)-2u =  f (x, u) in a smooth bounded domain Ω of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document} with nonlinear boundary conditions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\nabla u|^{p-2}\frac{\partial u}{\partial\nu} = |u|^{{q(x)-2}}u}$$\end{document} . We also assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{q(x) = p^\ast(x)\}\neq \emptyset}$$\end{document} , where p*(x) =  Np(x)/(N − p(x)) is the critical Sobolev exponent for variable exponents. The proof is based on a new version of the symmetric mountain-pass lemma due to Kajikiya, and property of these solutions is also obtained.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 64 条
  • [1] De Nápoli P.(2009)Multiple solutions for the Nonlinear Anal. TMA. 71 6283-6289
  • [2] Bonder J.F.(2007)-laplace operator with critical growth NoDEA Nonlinear Differ. Equ. Appl. 14 153-179
  • [3] Silva A.(2009)Existence results for gradient elliptic systems with nonlinear boundary conditions Proc. Edinburgh Math. Society. 52 97-108
  • [4] Bonder J.F.(2005)Infinitely many arbitrarily small solutions for sigular elliptic problems with critical Sobolev-Hardy exponents J. Funct. Anal. 225 352-370
  • [5] Martínez S.(1998)A critical-point theorem related to the symmetric mountain-pass lemma and its applications to elliptic equations Nonlinear Anal. 32 769-774
  • [6] Rossi J.D.(1991)Remarks on a class of elliptic problems with critical exponents Trans. Am. Math. Soc. 323 877-895
  • [7] He X.M.(2006)Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term SIAM J. Appl. Math. 66 1383-1406
  • [8] Zou W.M.(2001)Variable exponent, linear growth functionals in image restoration Arch. Ration. Mech. Anal. 156 121-140
  • [9] Kajikiya R.(1992)Regularity results for a class of functionals with nonstandard growth Science 258 761-766
  • [10] Li S.(1987)Electrorheological fluids Math. USSR Izv. 29 33-66