Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients

被引:0
作者
Xue-lei Lin
Michael K. Ng
Hai-Wei Sun
机构
[1] Hong Kong Baptist University,Department of Mathematics
[2] University of Macau,Department of Mathematics
来源
Journal of Scientific Computing | 2018年 / 75卷
关键词
Time-dependent space-fractional diffusion equation; Variable diffusion coefficients; High-order finite difference schemes; Stability; Convergence; 26A33; 35R11; 65M06; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study and analyze Crank–Nicolson temporal discretization with high-order spatial difference schemes for time-dependent Riesz space-fractional diffusion equations with variable diffusion coefficients. To the best of our knowledge, there is no stability and convergence analysis for temporally 2nd-order or spatially jth-order (j≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\ge 3$$\end{document}) difference schemes for such equations with variable coefficients. We prove under mild assumptions on diffusion coefficients and spatial discretization schemes that the resulting discretized systems are unconditionally stable and convergent with respect to discrete ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2$$\end{document}-norm. We further show that several spatial difference schemes with jth-order (j=1,2,3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,3,4$$\end{document}) truncation error satisfy the assumptions required in our analysis. As a result, we obtain a series of temporally 2nd-order and spatially jth-order (j=1,2,3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,3,4$$\end{document}) unconditionally stable difference schemes for solving time-dependent Riesz space-fractional diffusion equations with variable coefficients. Numerical results are presented to illustrate our theoretical results.
引用
收藏
页码:1102 / 1127
页数:25
相关论文
共 67 条
[1]  
Agrawal O(2002)Solution for a fractional diffusion-wave equation defined in a bounded domain Nonlinear Dyn. 29 145-155
[2]  
Benson D(2000)The fractional-order governing equation of Lévy motion Water Resour. Res. 36 1413-1423
[3]  
Wheatcraft S(1990)Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications Phys. Rep. 195 127-293
[4]  
Meerschaert M(2012)Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative J. Comput. Phys. 231 1743-1750
[5]  
Bouchaud J(2013)Superlinearly convergent algorithms for the two-dimensional space time Caputo Riesz fractional diffusion equation Appl. Numer. Math. 70 22-41
[6]  
Georges A(2014)Fourth order accurate scheme for the space fractional diffusion equations SIAM J. Numer. Anal. 52 1418-1438
[7]  
Çelik C(2004)Fractional diffusion in Plasma turbulence Phys. Plasmas 11 3854-3864
[8]  
Duman M(2017)High-order numerical algorithms for Riesz derivatives via constructing new generating functions J. Sci. Comput. 71 759-784
[9]  
Chen M(2015)A fourth-order approximation of fractional derivatives with its applications J. Comput. Phys. 281 787-805
[10]  
Deng W(2017)Fast algorithms for high-order numerical methods for space-fractional diffusion equations Int. J. Comput. Math. 94 1062-1078