Carbon isotope composition, water-use efficiency and biomass productivity of Eucalyptus microtheca populations under different water supplies

被引:0
|
作者
Chunyang Li
机构
[1] Tropical Silviculture Unit,Department of Forest Ecology
来源
Plant and Soil | 1999年 / 214卷
关键词
Carbon isotope composition; Drought stress; Eucalyptus microtheca; Plant growth; Water-use efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
Variation in carbon isotope composition (δ13C), water-use efficiency (WUE) and biomass productivity were compared among three populations of Eucalyptus microtheca F. Muell. in a greenhouse. Seedlings were maintained under one well-watered (Control, keeping the soil at field capacity) and two different water deficit conditions (Drought stress I, keeping the same soil water content; Drought stress II, keeping the same soil water supply). In each treatment, significant population differences in δ13C, WUE, and dry matter accumulation and allocation were detected. A negative correlation between WUE and biomass productivity was detected under control and drought stress I, but a positive correlation under drought stress II. The results suggested that there were different water-use strategies among the populations, the southeastern population with lower WUE may employ a prodigal water-use strategy, whereas the northwestern and central populations with higher WUE may employ a conservative water-use strategy. This knowledge may be useful as criteria for genotype selection within a breeding program for this species.
引用
收藏
页码:165 / 171
页数:6
相关论文
共 50 条
  • [1] Carbon isotope composition, water-use efficiency and biomass productivity of Eucalyptus microtheca populations under different water supplies
    Li, CY
    PLANT AND SOIL, 1999, 214 (1-2) : 165 - 171
  • [2] Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism
    Winter, K
    Aranda, J
    Holtum, JAM
    FUNCTIONAL PLANT BIOLOGY, 2005, 32 (05) : 381 - 388
  • [3] Carbon Isotope Discrimination and Water-Use Efficiency in Crotalaria Cover Crops under Moderate Water Deficit
    Verónica Berriel
    Carlos Perdomo
    Jorge Monza
    Journal of Soil Science and Plant Nutrition, 2020, 20 : 537 - 545
  • [4] Carbon Isotope Discrimination and Water-Use Efficiency in Crotalaria Cover Crops under Moderate Water Deficit
    Berriel, Veronica
    Perdomo, Carlos
    Monza, Jorge
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2020, 20 (02) : 537 - 545
  • [5] Effect of rock fragments content on water consumption, biomass and water-use efficiency of plants under different water conditions
    Mi, Meixia
    Shao, Ming'an
    Liu, Bingxia
    ECOLOGICAL ENGINEERING, 2016, 94 : 574 - 582
  • [6] Mechanisms for the relationships between water-use efficiency and carbon isotope composition and specific leaf area of maize (Zea mays L.) under water stress
    Congzhi Zhang
    Jiabao Zhang
    Hui Zhang
    Jinhua Zhao
    Qicong Wu
    Zhanhui Zhao
    Taiyi Cai
    Plant Growth Regulation, 2015, 77 : 233 - 243
  • [7] Mechanisms for the relationships between water-use efficiency and carbon isotope composition and specific leaf area of maize (Zea mays L.) under water stress
    Zhang, Congzhi
    Zhang, Jiabao
    Zhang, Hui
    Zhao, Jinhua
    Wu, Qicong
    Zhao, Zhanhui
    Cai, Taiyi
    PLANT GROWTH REGULATION, 2015, 77 (02) : 233 - 243
  • [8] Water-use efficiency and carbon isotope discrimination in two cultivars of upland rice during different developmental stages under three water regimes
    Zhao, BZ
    Kondo, M
    Maeda, M
    Ozaki, Y
    Zhang, JB
    PLANT AND SOIL, 2004, 261 (1-2) : 61 - 75
  • [9] Relationship of carbon isotope discrimination to water use efficiency and productivity of barley under field and greenhouse conditions
    Anyia, A. O.
    Slaski, J. J.
    Nyachiro, J. M.
    Archambault, D. J.
    Juskiw, P.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2007, 193 (05) : 313 - 323
  • [10] Water-use efficiency and carbon isotope discrimination in two cultivars of upland rice during different developmental stages under three water regimes
    Bingzi Zhao
    Motohiko Kondo
    Morihiro Maeda
    Yasuo Ozaki
    Jiabao Zhang
    Plant and Soil, 2004, 261 : 61 - 75