An Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}-Inequality for Anticommutators

被引:0
作者
Éric Ricard
机构
[1] UNICAEN,Normandie Univ
[2] CNRS,undefined
[3] LMNO,undefined
关键词
Noncommutative ; -spaces; Functional calculus; Schur multipliers; 46L51; 47B10;
D O I
10.1007/s00020-020-02622-4
中图分类号
学科分类号
摘要
We prove a basic inequality involving anticommutators in noncommutative Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}-spaces. We use it to complete our study of the noncommutative Mazur maps from Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document} to Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q$$\end{document} showing that they are Lipschitz on balls when 0<q<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<p<\infty $$\end{document}.
引用
收藏
相关论文
共 50 条
[21]   Dunkl–Hausdorff operators on BMOα(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${BMO}_{\alpha} {(\mathbb{R})}$$\end{document} and Wαp,r(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W}_{\alpha}^{p,r}{(\mathbb{R})}$$\end{document} [J].
Radouan Daher ;
Faouaz Saadi .
Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 (2) :853-860
[22]   Li–Yorke chaos for composition operators on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spaces [J].
N. C. Bernardes ;
U. B. Darji ;
B. Pires .
Monatshefte für Mathematik, 2020, 191 (1) :13-35
[23]   Linear Independence of Time–Frequency Translates in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Spaces [J].
Jorge Antezana ;
Joaquim Bruna ;
Enrique Pujals .
Journal of Fourier Analysis and Applications, 2020, 26 (4)
[24]   RHALY OPERATORS ACTING ON ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^p$$\end{document}-SPACES [J].
Petros Galanopoulos ;
Daniel Girela ;
Gabriel T. Prǎjiturǎ .
Journal of Mathematical Sciences, 2024, 280 (6) :1115-1122
[26]   Sharp Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{p}$\end{document}-Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document} type inequalities of weighted maximal operators of Vilenkin-Nörlund means and its applications [J].
Lasha Baramidze ;
Lars-Erik Persson ;
George Tephnadze ;
Peter Wall .
Journal of Inequalities and Applications, 2016 (1)
[29]   On fractional bending of beams with Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}-fractional derivative [J].
K. A. Lazopoulos ;
A. K. Lazopoulos .
Archive of Applied Mechanics, 2020, 90 (3) :573-584