Variable time-step ϑ-scheme for nonlinear evolution equations governed by a monotone operator

被引:0
|
作者
Etienne Emmrich
机构
[1] Technische Universität Berlin,Institut für Mathematik
来源
Calcolo | 2009年 / 46卷
关键词
Evolution equation; Monotone operator; Time discretisation; -scheme; Non-uniform grid; Convergence; 65M12; 65M15; 47J35; 35K55; 47H05;
D O I
暂无
中图分类号
学科分类号
摘要
The single-step ϑ-scheme on a variable time grid is employed for the approximate solution of the initial-value problem for a nonlinear first-order evolution equation. The evolution equation is supposed to be governed by a possibly time-dependent hemicontinuous operator that is (up to a shift) monotone and coercive, and fulfills a certain growth condition.
引用
收藏
页码:187 / 210
页数:23
相关论文
共 50 条
  • [41] Nonlinear evolution equations involving time-dependent subdifferentials of opposite sign
    Kandilakis, DA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (03) : 321 - 326
  • [42] A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coefficients
    Dehghan, Mehdi
    Taleei, Ameneh
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (01) : 43 - 51
  • [43] An efficient difference scheme for the non-Fickian time-fractional diffusion equations with variable coefficient
    Feng, Zhouping
    Ran, Maohua
    Liu, Yang
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [44] On a Randomized Backward Euler Method for Nonlinear Evolution Equations with Time-Irregular Coefficients
    Eisenmann, Monika
    Kovacs, Mihaly
    Kruse, Raphael
    Larsson, Stig
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2019, 19 (06) : 1387 - 1430
  • [45] Time-Domain Methods Based on Exponential Evolution Operator Approximation for the Solution of Maxwell's Equations
    Xiao, Fei
    Tang, Xiaohong
    Wang, Ling
    Wu, Tao
    APMC: 2009 ASIA PACIFIC MICROWAVE CONFERENCE, VOLS 1-5, 2009, : 68 - 71
  • [46] A space-time spectral approximation for solving nonlinear variable-order fractional sine and Klein-Gordon differential equations
    Doha, E. H.
    Abdelkawy, M. A.
    Amin, A. Z. M.
    Lopes, Antonio M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05) : 6212 - 6229
  • [47] Existence via time discretization for a class of doubly nonlinear operator-differential equations of Barenblatt-type
    Emmrich, Etienne
    Vallet, Guy
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (06) : 2499 - 2514
  • [48] Exponential decay for nonlinear abstract evolution equations with a countably infinite number of time-dependent time delays
    Paolucci, Alessandro
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) : 2413 - 2423
  • [49] A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations
    Lyu, Pin
    Vong, Seakweng
    NUMERICAL ALGORITHMS, 2018, 78 (02) : 485 - 511
  • [50] SHARP POINTWISE-IN-TIME ERROR ESTIMATE OF L1 SCHEME FOR NONLINEAR SUBDIFFUSION EQUATIONS
    Li, Dongfang
    Qin, Hongyu
    Zhang, Jiwei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (03): : 662 - 678