Variable time-step ϑ-scheme for nonlinear evolution equations governed by a monotone operator

被引:0
|
作者
Etienne Emmrich
机构
[1] Technische Universität Berlin,Institut für Mathematik
来源
Calcolo | 2009年 / 46卷
关键词
Evolution equation; Monotone operator; Time discretisation; -scheme; Non-uniform grid; Convergence; 65M12; 65M15; 47J35; 35K55; 47H05;
D O I
暂无
中图分类号
学科分类号
摘要
The single-step ϑ-scheme on a variable time grid is employed for the approximate solution of the initial-value problem for a nonlinear first-order evolution equation. The evolution equation is supposed to be governed by a possibly time-dependent hemicontinuous operator that is (up to a shift) monotone and coercive, and fulfills a certain growth condition.
引用
收藏
页码:187 / 210
页数:23
相关论文
共 50 条
  • [21] ALGORITHM FOR SOLVING NONLINEAR MONOTONE OPERATOR EQUATIONS WITH APPLICATIONS
    Al-Kawaz, Rana Z.
    Abubakar, Auwal Bala
    Ibrahim, Abdulkarim Hassan
    Khammahawong, Konrawut
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2023, 2023
  • [22] THE APPROXIMATE SOLUTION OF MONOTONE NONLINEAR OPERATOR-EQUATIONS
    ANSELONE, PM
    LEI, JG
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1986, 16 (04) : 791 - 801
  • [23] MONOTONE ITERATIVE METHODS FOR NONLINEAR OPERATOR-EQUATIONS
    POTRA, FA
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1987, 9 (7-8) : 809 - 843
  • [24] TIME-STEP SEQUENCES FOR PARABOLIC DIFFERENTIAL-EQUATIONS
    ZUUR, EAH
    APPLIED NUMERICAL MATHEMATICS, 1995, 17 (02) : 173 - 186
  • [25] Three-Step Difference Scheme for Solving Nonlinear Time-Evolution Partial Differential Equations
    Gong Jing
    Wang Bin
    Ji Zhong-Zhen
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2013, 6 (06) : 423 - 427
  • [26] Three-Step Difference Scheme for Solving Nonlinear Time-Evolution Partial Differential Equations
    GONG Jing
    WANG Bin
    JI Zhong-Zhen
    AtmosphericandOceanicScienceLetters, 2013, 6 (06) : 423 - 427
  • [27] Parallel three-dimensional DSMC method using mesh refinement and variable time-step scheme
    Wu, JS
    Tseng, KC
    Wu, FY
    COMPUTER PHYSICS COMMUNICATIONS, 2004, 162 (03) : 166 - 187
  • [28] Controllability for nonlinear evolution equations with monotone operators
    Yong Han Kang
    Jin-Mun Jeong
    Hyun-Hee Rho
    Journal of Inequalities and Applications, 2013
  • [29] VARIABLE TIME-STEP TECHNIQUE FOR TRANSMISSION-LINE MODELING
    HUI, SYR
    FUNG, KK
    ZHANG, MQ
    CHRISTOPOULOS, C
    IEE PROCEEDINGS-A-SCIENCE MEASUREMENT AND TECHNOLOGY, 1993, 140 (04): : 299 - 302
  • [30] Integral manifolds under explicit variable time-step discretization
    Keller, Stefan
    Potzsche, Christian
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (3-4) : 321 - 342