A robust all-at-once multigrid method for the Stokes control problem

被引:0
作者
Stefan Takacs
机构
[1] University of Oxford,Mathematical Institute
来源
Numerische Mathematik | 2015年 / 130卷
关键词
65N55; 76D07; 49J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present an all-at-once multigrid method for a distributed Stokes control problem (velocity tracking problem). For solving such a problem, we use the fact that the solution is characterized by the optimality system (Karush–Kuhn–Tucker-system). The discretized optimality system is a large-scale linear system whose condition number depends on the grid size and on the choice of the regularization parameter forming a part of the problem. Recently, block-diagonal preconditioners have been proposed, which allow to solve the problem using a Krylov space method with convergence rates that are robust in both, the grid size and the regularization parameter or cost parameter. In the present paper, we develop an all-at-once multigrid method for a Stokes control problem and show robust convergence, more precisely, we show that the method converges with rates which are bounded away from one by a constant which is independent of the grid size and the choice of the regularization or cost parameter.
引用
收藏
页码:517 / 540
页数:23
相关论文
共 21 条
[1]  
Drăgănescu A(2013)Multigrid solution of a distributed optimal control problem constrained by the stokes equations Appl. Math. Comput. 219 5622-5634
[2]  
Soane AM(1979)Error estimates for finite element method solution of the Stokes problem in primitive variables Numer. Math. 33 211-224
[3]  
Bercovier M(2009)Multigrid methods for PDE optimization SIAM Rev. 51 361-395
[4]  
Pironneau O(1996)Multigrid methods for parameter dependent problems RAIRO Modélisation Math. Anal. Numér. 30 265-297
[5]  
Borzi A(1988)Some fast 3d finite element solvers for the generalized stokes problem Int. J. Numer. Methods Fluids 8 865-895
[6]  
Schulz V(1976)A regularity result for the Stokes problem in a convex polygon J. Funct. Anal. 21 397-431
[7]  
Brenner SC(2012)Multigrid analysis for the time dependent Stokes problem Math. Comput. 81 57-79
[8]  
Cahouet J-P(2011)A robust multigrid method for elliptic optimal control problems SIAM J. Numer. Anal. 49 1482-1503
[9]  
Chabard J(2011)Convergence analysis of multigrid methods with collective point smoothers for optimal control problems Comput. Vis. Sci. 14 131-141
[10]  
Kellogg RB(2013)Convergence analysis of all-at-once multigrid methods for elliptic control problems under partial elliptic regularity SIAM J. Numer. Anal. 51 1853-1874