Ramadanov conjecture and line bundles over compact Hermitian symmetric spaces

被引:0
作者
Miroslav Engliš
Genkai Zhang
机构
[1] Silesian University,Mathematics Institute
[2] Academy of Sciences,Mathematics Institute
[3] Chalmers University of Technology,Department of Mathematical Sciences
[4] Göteborg University,Department of Mathematical Sciences
来源
Mathematische Zeitschrift | 2010年 / 264卷
关键词
Ramadanov conjecture; Szegö kernel; Log term; Kähler manifold; Line bundle; Pseudoconvex domain; Circle bundle; Lens space; Compact Hermitian symmetric space; Lie group; Cohomology ring; Poincaré series;
D O I
暂无
中图分类号
学科分类号
摘要
We compute the Szegö kernels of the unit circle bundles of homogeneous negative line bundles over a compact Hermitian symmetric space. We prove that their logarithmic terms vanish in all cases and, further, that the circle bundles are not diffeomorphic to the unit sphere in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb C^n}$$\end{document} for Grassmannian manifolds of higher ranks. In particular, they provide an infinite family of smoothly bounded strictly pseudoconvex domains on complex manifolds for which the logarithmic term in the Fefferman expansion of the Szegö kernel vanishes but whose boundary is not diffeomorphic to the sphere (in fact, it is not even locally spherical). The analogous results for the Bergman kernel are also obtained.
引用
收藏
页码:901 / 912
页数:11
相关论文
共 26 条
[1]  
Attioui A.(1996)Version réelle de la conjecture de Ramadanov Ann. Sci. école Norm. Sup. 29 273-285
[2]  
Axler S.(1982)Toeplitz operators on Bergman spaces Canad. J. Math. 34 466-483
[3]  
Conway J.B.(1983)Strictly pseudoconvex domains in Bull. Am. Math. Soc. (N.S.) 8 125-322
[4]  
McDonald G.(1975)Quantization in complex symmetric spaces Izvestiya Akad. Nauk SSSR Ser. Mat. 39 363-402
[5]  
Beals M.(1983)Sur le noyau de Bergman des domaines de Reinhardt Invent. Math. 72 131-152
[6]  
Fefferman C.(1976)Spherical hypersurfaces in complex manifolds Invent. Math. 33 223-246
[7]  
Grossmann R.(1996)On the Riemann mapping theorem Ann. Math. 144 421-439
[8]  
Berezin F.A.(1990)Function spaces and reproducing kernels on bounded symmetric domains J. Funct. Anal. 88 64-89
[9]  
Boichu D.(1974)The Bergman kernel and biholomorphic mappings of pseudoconvex domains Inv. Math. 26 1-65
[10]  
Cœ uré G.(1987)Higher asymptotics of the complex Monge-Ampére equation Compos. Math. 64 133-155