Loop Models, Random Matrices and Planar Algebras

被引:0
|
作者
A. Guionnet
V. F. R. Jones
D. Shlyakhtenko
P. Zinn-Justin
机构
[1] UMPA,Department of Mathematics
[2] CNRS UMR 5669,Department of Mathematics
[3] ENS Lyon,undefined
[4] UC Berkeley,undefined
[5] UCLA,undefined
[6] UPMC Univ Paris 6,undefined
[7] CNRS UMR 7589,undefined
[8] LPTHE,undefined
来源
关键词
Bipartite Graph; Matrix Model; Random Matrix; Gibbs Measure; Loop Model;
D O I
暂无
中图分类号
学科分类号
摘要
We define matrix models that converge to the generating functions of a wide variety of loop models with fugacity taken in sets with an accumulation point. The latter can also be seen as moments of a non-commutative law on a subfactor planar algebra. We apply this construction to compute the generating functions of the Potts model on a random planar map.
引用
收藏
页码:45 / 97
页数:52
相关论文
共 50 条
  • [21] Random matrices and matrix models: The JNU lectures
    Madan Lal Mehta
    Pramana, 1997, 48 : 7 - 48
  • [22] Integrable models from singly generated planar algebras
    Poncini, Xavier
    Rasmussen, Jorgen
    NUCLEAR PHYSICS B, 2023, 994
  • [23] Random matrices and matrix models: the JNU lectures
    Mehta, Madan Lal
    Pramana - Journal of Physics, 1997, 48 (1 pt 1): : 7 - 48
  • [24] Random matrices and matrix models: The JNU lectures
    Mehta, ML
    PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (01): : 7 - 48
  • [25] Growth models, random matrices and Painleve transcendents
    Forrester, PJ
    NONLINEARITY, 2003, 16 (06) : R27 - R49
  • [26] Symmetric vertex models on planar random graphs
    Johnston, DA
    PHYSICS LETTERS B, 1999, 463 (01) : 9 - 18
  • [27] The growth exponent for planar loop-erased random walk
    Masson, Robert
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 1012 - 1073
  • [28] QUANTUM HEISENBERG MODELS AND RANDOM LOOP REPRESENTATIONS
    Ueltschi, D.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 351 - 361
  • [29] Time series, correlation matrices and random matrix models
    Vinayak
    Seligman, Thomas H.
    LATIN-AMERICAN SCHOOL OF PHYSICS MARCOS MOSHINSKY ELAF: NONLINEAR DYNAMICS IN HAMILTONIAN SYSTEMS, 2014, 1575 : 196 - 217
  • [30] RANDOM MATRICES AS MODELS FOR THE STATISTICS OF QUANTUM-MECHANICS
    CASATI, G
    GUARNERI, I
    MANTICA, G
    PHYSICA D, 1986, 21 (01): : 105 - 114