Diophantine approximations and foliations

被引:0
作者
Michael McQuillan
机构
[1] All Souls College,
来源
Publications Mathématiques de l'Institut des Hautes Études Scientifiques | 1998年 / 87卷 / 1期
关键词
Line Bundle; Exceptional Divisor; Singular Locus; Finite Measure; DIOPHANTINE Approximation;
D O I
10.1007/BF02698862
中图分类号
学科分类号
摘要
In this paper we indicate the proof of an effective version of the Green-Griffiths conjecture for surfaces of general type and positive second Segre class (i.e.c12>c2). Naturally this effective version is stronger than the Green-Griffiths conjecture itself.
引用
收藏
页码:121 / 174
页数:53
相关论文
共 18 条
[1]  
Baum P.(1972)Singularities Of Holomorphic Foliations J. Differential Geometry 7 279-342
[2]  
Bott R.(1977)Families Of Curves On Surfaces Of General Type Soviet Math. Dokl. 18 1294-1297
[3]  
Bogomolov F.(1978)Holomorphic tensors and vector bundles on projective varieties Math. USSR Izv. 13 499-555
[4]  
Bogomolov F.(1990)The Mordell Conjecture Revisited Ann. Scuola Norm. Sup. Pisa Cl. Sci 17 615-640
[5]  
Bombieri E.(1992)Regularization of closed positive currents and intersection theory JAG 1 361-409
[6]  
Demailly J. P.(1991)Diophantine Approximation on abelian Varieties Ann. Math. 133 549-576
[7]  
Faltings G.(1979)On the Zariski problem Proc. Japan Acad. 55 106-110
[8]  
Fujita T.(1978)Hypersurface solutions d’une équation de Pfaff analytique Math. Ann. 232 239-245
[9]  
Jouanolou J. P.(1990)Holomorphic curves in surfaces of general type Proc. Nat. Acad. Sci. USA 87 80-82
[10]  
Lu S.(1996)A new proof of the Bloch conjecture JAG 5 107-117