O’Neil Type Convolution Inequalities in Lorentz Spaces

被引:0
作者
Pankaj Jain
Sandhya Jain
机构
[1] South Asian University,Department of Mathematics
[2] Vivekananda College (University of Delhi),Department of Mathematics
来源
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences | 2016年 / 86卷
关键词
Lorentz spaces; Convolution; Weighted inequalities; Mixed norm; 46E30; 26D20;
D O I
暂无
中图分类号
学科分类号
摘要
A refinement of O’Neil inequality has been given by improving the constant in the inequality. This inequality has been generalized for Lorentz spaces with general weights as well as for the two dimensional Lorentz spaces.
引用
收藏
页码:267 / 271
页数:4
相关论文
共 20 条
[1]  
O’Neil R(1963)Convolution operators and Duke Math J 30 129-142
[2]  
Lorentz GG(1950) spaces Ann Math 51 37-55
[3]  
Barza S(2006)Some new functional spaces Positivity 10 539-554
[4]  
Kamińska A(2004)Mixed norm and multidimensional Lorentz spaces Acta Math Hung 104 203-224
[5]  
Persson LE(2014)Multidimensional rearrangement and Lorentz spaces Eurasian Math J 5 79-91
[6]  
Soria J(2012)Normability and duality in multidimensional Lorentz spaces J Math Anal Appl 387 335-348
[7]  
Barza S(1992)Iterated rearrangements and Gagliardo–Sobolev type inequalities Forum Math 4 135-146
[8]  
Persson LE(2001)Some classical operators on Lorentz space Math Inequal Appl 4 397-428
[9]  
Soria J(2011)On embeddings between classical Lorentz spaces J Fourier Anal Appl 17 486-505
[10]  
Jain P(1981)Convolution inequalities in Lorentz spaces Trans Am Math Soc 263 149-167