Greedy optimal control for elliptic problems and its application to turnpike problems

被引:0
|
作者
Víctor Hernández-Santamaría
Martin Lazar
Enrique Zuazua
机构
[1] DeustoTech,Facultad de Ingeniería
[2] University of Deusto,Department of Electrical Engineering and Computing
[3] Universidad de Deusto,Departamento de Matemáticas
[4] University of Dubrovnik,UPMC Univ Paris 06, CNRS UMR 7598, Laboratoire Jacques
[5] Universidad Autónoma de Madrid,Louis Lions
[6] Sorbonne Universités,undefined
来源
Numerische Mathematik | 2019年 / 141卷
关键词
49J20; 49K20; 93C20; 49N05; 65K10;
D O I
暂无
中图分类号
学科分类号
摘要
We adapt and apply greedy methods to approximate in an efficient way the optimal controls for parameterized elliptic control problems. Our results yield an optimal approximation procedure that, in particular, performs better than simply sampling the parameter-space to compute controls for each parameter value. The same method can be adapted for parabolic control problems, but this leads to greedy selections of the realizations of the parameters that depend on the initial datum under consideration. The turnpike property (which ensures that parabolic optimal control problems behave nearly in a static manner when the control horizon is long enough) allows using the elliptic greedy choice of the parameters in the parabolic setting too. We present various numerical experiments and an extensive discussion of the efficiency of our methodology for parabolic control and indicate a number of open problems arising when analyzing the convergence of the proposed algorithms.
引用
收藏
页码:455 / 493
页数:38
相关论文
共 50 条
  • [1] Greedy optimal control for elliptic problems and its application to turnpike problems
    Hernandez-Santamaria, Victor
    Lazar, Martin
    Zuazua, Enrique
    NUMERISCHE MATHEMATIK, 2019, 141 (02) : 455 - 493
  • [2] Turnpike solutions of optimal control problems
    Quang N.M.
    Ukhin M.Yu.
    Autom. Remote Control, 2006, 6 (880-886): : 880 - 886
  • [3] Turnpike properties of optimal relaxed control problems☆
    Lou, Hongwei
    Wang, Weihan
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [4] On the turnpike property with interior decay for optimal control problems
    Gugat, Martin
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2021, 33 (02) : 237 - 258
  • [5] On the turnpike property with interior decay for optimal control problems
    Martin Gugat
    Mathematics of Control, Signals, and Systems, 2021, 33 : 237 - 258
  • [6] Turnpike in Nonlinear Optimal Control Problems With Indefinite Hamiltonian
    Lu, Yi
    Guglielmi, Roberto
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 2691 - 2696
  • [7] ON THE TURNPIKE PHENOMENON FOR OPTIMAL BOUNDARY CONTROL PROBLEMS WITH HYPERBOLIC SYSTEMS
    Gugat, Martin
    Hante, Falk M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (01) : 264 - 289
  • [8] The turnpike property for mean-field optimal control problems
    Gugat, Martin
    Herty, Michael
    Segala, Chiara
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2024,
  • [9] A Turnpike Property for Optimal Control Problems with Dynamic Probabilistic Constraints
    Gugat, Martin
    Heitsch, Holger
    Henrion, Rene
    JOURNAL OF CONVEX ANALYSIS, 2023, 30 (03) : 1025 - 1052
  • [10] Stability of elliptic optimal control problems
    Walczak, S
    Ledzewicz, U
    Schättler, H
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (10-11) : 1245 - 1256