On maximum order statistics from heterogeneous geometric variables

被引:0
作者
Peng Zhao
Feng Su
机构
[1] Jiangsu Normal University,School of Mathematical Sciences
[2] Hengyang Normal University,Department of Mathematics and Computational Science
来源
Annals of Operations Research | 2014年 / 212卷
关键词
Hazard rate order; Usual stochastic order; Exponential distribution; Geometric distribution; Parallel system;
D O I
暂无
中图分类号
学科分类号
摘要
Let X1,X2 be independent geometric random variables with parameters p1,p2, respectively, and Y1,Y2 be i.i.d. geometric random variables with common parameter p. It is shown that X2:2, the maximum order statistic from X1,X2, is larger than Y2:2, the second order statistic from Y1,Y2, in terms of the hazard rate order [usual stochastic order] if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\geq \tilde{p}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{p}=(p_{1}p_{2})^{\frac{1}{2}}$\end{document} is the geometric mean of (p1,p2). This result answers an open problem proposed recently by Mao and Hu (Probab. Eng. Inf. Sci. 24:245–262, 2010) for the case when n=2.
引用
收藏
页码:215 / 223
页数:8
相关论文
共 37 条
  • [1] Bon J. L.(2006)Comparisons of order statistics in a random sequence to the same statistics with i.i.d. variables ESAIM: Probability and Statistics 10 1-10
  • [2] Pǎltǎnea E.(1997)Stochastic comparisons of parallel systems of heterogeneous exponential components Journal of Statistical Planning and Inference 65 203-211
  • [3] Dykstra R.(2004)Tunable approximations for the mean and variance of heterogeneous geometrically distributed random variables The American Statistician 58 322-327
  • [4] Kochar S. C.(2000)Some new results on stochastic comparisons of parallel systems Journal of Applied Probability 37 283-291
  • [5] Rojo J.(2007)Stochastic orderings of order statistics of independent random variables with different scale parameters Communications in Statistics. Theory and Methods 36 1441-1449
  • [6] Jeske D. R.(2007)Some recent results on stochastic comparisons and dependence among order statistics in the case of PHR model Journal of Iranian Statistical Society 6 125-140
  • [7] Blessinger T.(2007)Stochastic comparisons of parallel systems when components have proportional hazard rates Probability in the Engineering and Informational Science 21 597-609
  • [8] Khaledi B. E.(2009)Comparisons of parallel systems according to the convex transform order Journal of Applied Probability 46 342-352
  • [9] Kochar S. C.(1955)Fatigue life of airplane structures Journal of the Aeronautical Sciences 22 394-262
  • [10] Khaledi B. E.(2010)Equivalent characterizations on orderings of order statistics and sample ranges Probability in the Engineering and Informational Sciences 24 245-925