The Dω—classical orthogonal polynomials

被引:0
作者
Abdelkarim F. [1 ]
Maroni P. [2 ]
机构
[1] Route de Medenine, Ecole Nationale d’Ingénieurs de Gabès, Gabès
[2] Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie-C.N.R.S, 4 Place Jussieu, Paris cedex 05
关键词
33C45; 42C05; difference operator; Orthogonal polynomials; semi-classical forms;
D O I
10.1007/BF03322520
中图分类号
学科分类号
摘要
This is an expository paper; it aims to give an essentially self-contained overview of discrete classical polynomials from their characterizations by Hahn’s property and a Rodrigues’ formula which allows us to construct it. The integral representations of corresponding forms are given. © 1997, Birkhäuser Verlag, Basel.
引用
收藏
页码:1 / 28
页数:27
相关论文
共 33 条
[1]  
Andrews G.E., Askey R., Et al., Classical orthogonal polynomials, Orthogonal polynomials and their applications. Lect. Notes in Math. 1171, (1985)
[2]  
Askey R., Continuous Hahn polynomials, J. Phys.A.: Math.Gen, 18, pp. L 1017-L 1019, (1985)
[3]  
Askey R., Wilson J., A set of hypergeometric orthogonal polynomials, SI AM J. Math. Anal., 13, pp. 651-655, (1982)
[4]  
Carlitz L., Some polynomials of Touchard connected with the Bernoulli numbers, Canad. J. Math, 9, pp. 188-190, (1957)
[5]  
Carlitz L., Eulerian numbers and polynomials, Math. Mag, 33, pp. 247-260, (1959)
[6]  
Carlitz L., Some orthogonal polynomials related to Fibonacci numbers, Fibonacci Quart, 4, pp. 43-48, (1966)
[7]  
Charlier C.V.L., Über die Darstellung willkörlicher Funktionen, Arkiv förmat. astr. och fysik, 2, 20, pp. 1-35, (1905)
[8]  
Chihara T.S., An introduction to orthogonal polynomials, (1977)
[9]  
Garcia A.G., Marcellan F., Salto L., A distributional study of discrete classical orthogonal polynomials, J. Comp. Appl. Math., 57, pp. 147-162, (1995)
[10]  
GrObner W., Über die Konstruktion von Systemen orthogonaler Polynome in ein — und zwei — dimensionalen Bereichen, Monat. Math., 52, pp. 38-54, (1948)