Finite Nilpotent Groups Whose Cyclic Subgroups are TI-Subgroups

被引:0
作者
Alireza Abdollahi
Hamid Mousavi
机构
[1] University of Isfahan,Department of Mathematics
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
[3] University of Tabriz,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2017年 / 40卷
关键词
TI-group; CTI-groups; -Group; 20D60;
D O I
暂无
中图分类号
学科分类号
摘要
A subgroup H of a group G is called a TI-subgroup if Hg∩H=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^g\cap H=1$$\end{document} or H for all g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in G$$\end{document}; and H is called quasi TI if CG(x)≤NG(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}_G(x)\le \mathcal {N}_G(H)$$\end{document} for all non-trivial elements x∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in H$$\end{document}. A group G is called (quasi CTI-group) CTI-group if every cyclic subgroup of G is a (quasi TI-subgroup) TI-subgroup. It is clear that TI subgroups are quasi TI. We first show that finite nilpotent quasi CTI-groups are CTI. In this paper, we classify all finite nilpotent CTI-groups.
引用
收藏
页码:1577 / 1589
页数:12
相关论文
共 15 条
[11]  
Kazarin LS(undefined)-groups undefined undefined undefined-undefined
[12]  
Mousavi H(undefined)undefined undefined undefined undefined-undefined
[13]  
Rastgoo T(undefined)undefined undefined undefined undefined-undefined
[14]  
Zenkov V(undefined)undefined undefined undefined undefined-undefined
[15]  
Berkovich Y(undefined)undefined undefined undefined undefined-undefined