Finite Nilpotent Groups Whose Cyclic Subgroups are TI-Subgroups

被引:0
作者
Alireza Abdollahi
Hamid Mousavi
机构
[1] University of Isfahan,Department of Mathematics
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
[3] University of Tabriz,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2017年 / 40卷
关键词
TI-group; CTI-groups; -Group; 20D60;
D O I
暂无
中图分类号
学科分类号
摘要
A subgroup H of a group G is called a TI-subgroup if Hg∩H=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^g\cap H=1$$\end{document} or H for all g∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in G$$\end{document}; and H is called quasi TI if CG(x)≤NG(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}_G(x)\le \mathcal {N}_G(H)$$\end{document} for all non-trivial elements x∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in H$$\end{document}. A group G is called (quasi CTI-group) CTI-group if every cyclic subgroup of G is a (quasi TI-subgroup) TI-subgroup. It is clear that TI subgroups are quasi TI. We first show that finite nilpotent quasi CTI-groups are CTI. In this paper, we classify all finite nilpotent CTI-groups.
引用
收藏
页码:1577 / 1589
页数:12
相关论文
共 15 条
[1]  
Walls G(1979)Trivial intersection groups Arch. Math. (Basel) 32 1-4
[2]  
Guo X(2007)Finite groups whose abelian subgroups are TI-subgroups J. Algebra 307 565-569
[3]  
Li S(2007)Finite Acta Math. Sin. Engl. Ser. 23 731-734
[4]  
Flavell P(2008)-groups whose abelian subgroups have a trivial intersection J. Algebra 320 3605-3611
[5]  
Li SR(1971)Finite groups all of whose abelian subgroups are QTI-subgroups Dokl. Akad. Nauk SSSR 197 773-776
[6]  
Guo XY(1969)Certain classes of finite groups Perm’ Gos. Univ. Uchen. Zapiski 218 268-279
[7]  
Qian G(1971)Groups with certain conditions imposed on the normalizers of subgroups Soviet Math. Dokl 12 549-553
[8]  
Tang F(2013)On some classes of finite groups J. Group Theory 16 249-261
[9]  
Kazarin LS(2000)The structure of non-nilpotent CTI-groups J. Algebra 224 198240-undefined
[10]  
Kazarin LS(undefined)On subgroups of finite undefined undefined undefined-undefined