Nikol’skii-type inequalities for entire functions of exponential type on Rn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}}^{n}$$\end{document} for the Lorentz–Zygmund spaces are obtained. Some new limiting cases are examined. Application to Besov–type spaces of logarithmic smoothness is given.