Assessment of Simple Models for Molecular Simulation of Ethylene Carbonate and Propylene Carbonate as Solvents for Electrolyte Solutions

被引:0
作者
Mangesh I. Chaudhari
Ajay Muralidharan
Lawrence R. Pratt
Susan B. Rempe
机构
[1] Sandia National Laboratories,Center for Biological and Engineering Sciences
[2] Tulane University,Department of Chemical and Biomolecular Engineering
来源
Topics in Current Chemistry | 2018年 / 376卷
关键词
Li-ion battery; Molecular dynamics simulations; Propylene carbonate; Ethylene carbonate;
D O I
暂无
中图分类号
学科分类号
摘要
Progress in understanding liquid ethylene carbonate (EC) and propylene carbonate (PC) on the basis of molecular simulation, emphasizing simple models of interatomic forces, is reviewed. Results on the bulk liquids are examined from the perspective of anticipated applications to materials for electrical energy storage devices. Preliminary results on electrochemical double-layer capacitors based on carbon nanotube forests and on model solid-electrolyte interphase (SEI) layers of lithium ion batteries are considered as examples. The basic results discussed suggest that an empirically parameterized, non-polarizable force field can reproduce experimental structural, thermodynamic, and dielectric properties of EC and PC liquids with acceptable accuracy. More sophisticated force fields might include molecular polarizability and Buckingham-model description of inter-atomic overlap repulsions as extensions to Lennard-Jones models of van der Waals interactions. Simple approaches should be similarly successful also for applications to organic molecular ions in EC/PC solutions, but the important case of Li+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document} deserves special attention because of the particularly strong interactions of that small ion with neighboring solvent molecules. To treat the Li+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document} ions in liquid EC/PC solutions, we identify interaction models defined by empirically scaled partial charges for ion-solvent interactions. The empirical adjustments use more basic inputs, electronic structure calculations and ab initio molecular dynamics simulations, and also experimental results on Li+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document} thermodynamics and transport in EC/PC solutions. Application of such models to the mechanism of Li+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document} transport in glassy SEI models emphasizes the advantage of long time-scale molecular dynamics studies of these non-equilibrium materials.
引用
收藏
相关论文
共 361 条
[1]  
Schütter C(2015)Toward new solvents for EDLCs: from computational screening to electrochemical validation J Phys Chem C 119 13413-13424
[2]  
Husch T(2014)Electrolytes and interphases in Li-Ion batteries and beyond Chem Rev 114 11503-11618
[3]  
Korth M(1987)The missing term in effective pair potentials J Phys Chem 91 6269-6271
[4]  
Balducci A(2012)Is water the universal solvent for life? Orig Life Evol Biosph 42 405-409
[5]  
Xu K(2009)Polarizable force field development and molecular dynamics simulations of ionic liquids J Phys Chem B 113 11463-11478
[6]  
Berendsen HJC(2015)How to estimate solid-electrolyte-interphase features when screening electrolyte materials Phys Chem Chem Phys 17 1-10
[7]  
Grigera JR(2014)Large-scale virtual high-throughput screening for the identification of new battery electrolyte solvents: evaluation of electronic structure theory methods Phys Chem Chem Phys 16 7919-7926
[8]  
Straatsma TP(2014)Large-scale virtual high-throughput screening for the identification of new battery electrolyte solvents: computing infrastructure and collective properties Phys Chem Chem Phys 17 1-8
[9]  
Pohorille A(2015)Charting the known chemical space for non-aqueous lithium—air battery electrolyte solvents Phys Chem Chem Phys 17 22596-22603
[10]  
Pratt LR(2009)Molecular simulation of electric double-layer capacitors based on carbon nanotube forests J Am Chem Soc 131 12373-12376