Invariant Higher-Order Variational Problems II

被引:0
作者
François Gay-Balmaz
Darryl D. Holm
David M. Meier
Tudor S. Ratiu
François-Xavier Vialard
机构
[1] École Normale Supérieure/CNRS,Laboratoire de Météorologie Dynamique
[2] Imperial College,Department of Mathematics
[3] École Polytechnique Fédérale de Lausanne,Section de Mathématiques and Bernoulli Center
[4] Université Paris-Dauphine,Centre de Recherche en Mathématiques de la Décision
来源
Journal of Nonlinear Science | 2012年 / 22卷
关键词
Hamilton’s principle; Other variational principles; Constrained dynamics; Higher-order theories; Optimal control problems involving partial differential equations; 70H25; 70H30; 70H45; 70H50; 49J20;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by applications in computational anatomy, we consider a second-order problem in the calculus of variations on object manifolds that are acted upon by Lie groups of smooth invertible transformations. This problem leads to solution curves known as Riemannian cubics on object manifolds that are endowed with normal metrics. The prime examples of such object manifolds are the symmetric spaces. We characterize the class of cubics on object manifolds that can be lifted horizontally to cubics on the group of transformations. Conversely, we show that certain types of non-horizontal geodesic on the group of transformations project to cubics. Finally, we apply second-order Lagrange–Poincaré reduction to the problem of Riemannian cubics on the group of transformations. This leads to a reduced form of the equations that reveals the obstruction for the projection of a cubic on a transformation group to again be a cubic on its object manifold.
引用
收藏
页码:553 / 597
页数:44
相关论文
共 84 条
[11]  
Holm D.D.(1995)Geodesic boundary value problems with symmetry J. Dyn. Control Syst. 1 177-202
[12]  
Ratiu T.S.(1998)The dynamic interpolation problem: on Riemannian manifolds, Lie groups, and symmetric spaces Q. Appl. Math. 56 587-600
[13]  
Camarinha M.(2011)Variational problems on flows of diffeomorphisms for image matching J. Geom. Mech. 3 41-79
[14]  
Silva Leite F.(2010)Clebsch optimal control formulation in mechanics Commun. Math. Phys. 42 579-606
[15]  
Crouch P.E.(2011)Invariant higher-order variational problems Bull. Braz. Math. Soc. 19 445-460
[16]  
Camarinha M.(2002)Higher order Lagrange–Poincaré and Hamilton–Poincaré reductions IMA J. Math. Control Inf. 56 617-694
[17]  
Silva Leite F.(1998)An analytical theory for Riemannian cubic polynomials Q. Appl. Math. 232 203-235
[18]  
Crouch P.E.(2004)Computational anatomy: an emerging discipline Prog. Math. 137 1-81
[19]  
Camassa R.(1998)Momentum maps and measure-valued solutions (peakons, filaments and sheets) for the EPDiff equation Adv. Math. 23 170-178
[20]  
Holm D.D.(2004)The Euler–Poincaré equations and semidirect products with applications to continuum theories NeuroImage 22 171-180