Invariant Higher-Order Variational Problems II

被引:0
作者
François Gay-Balmaz
Darryl D. Holm
David M. Meier
Tudor S. Ratiu
François-Xavier Vialard
机构
[1] École Normale Supérieure/CNRS,Laboratoire de Météorologie Dynamique
[2] Imperial College,Department of Mathematics
[3] École Polytechnique Fédérale de Lausanne,Section de Mathématiques and Bernoulli Center
[4] Université Paris-Dauphine,Centre de Recherche en Mathématiques de la Décision
来源
Journal of Nonlinear Science | 2012年 / 22卷
关键词
Hamilton’s principle; Other variational principles; Constrained dynamics; Higher-order theories; Optimal control problems involving partial differential equations; 70H25; 70H30; 70H45; 70H50; 49J20;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by applications in computational anatomy, we consider a second-order problem in the calculus of variations on object manifolds that are acted upon by Lie groups of smooth invertible transformations. This problem leads to solution curves known as Riemannian cubics on object manifolds that are endowed with normal metrics. The prime examples of such object manifolds are the symmetric spaces. We characterize the class of cubics on object manifolds that can be lifted horizontally to cubics on the group of transformations. Conversely, we show that certain types of non-horizontal geodesic on the group of transformations project to cubics. Finally, we apply second-order Lagrange–Poincaré reduction to the problem of Riemannian cubics on the group of transformations. This leads to a reduced form of the equations that reveals the obstruction for the projection of a cubic on a transformation group to again be a cubic on its object manifold.
引用
收藏
页码:553 / 597
页数:44
相关论文
共 84 条
[1]  
Alekseevky D.(2003)The Riemannian geometry of orbit spaces—the metric, geodesics, and integrable systems Publ. Math. (Debr.) 62 247-276
[2]  
Kriegl A.(1966)Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits Ann. Inst. Fourier 16 319-361
[3]  
Losik M.(1982)Convexity and commuting Hamiltonians Bull. Lond. Math. Soc. 18 305-315
[4]  
Michor P.W.(1996)Optimal control and geodesic flows Syst. Control Lett. 28 65-72
[5]  
Arnold V.I.(2011)The momentum map representation of images J. Nonlinear Sci. 21 115-150
[6]  
Atiyah M.F.(1995)Splines of class IMA J. Math. Control Inf. 12 399-410
[7]  
Bloch A.M.(2001) on non-Euclidean spaces Differ. Geom. Appl. 15 107-135
[8]  
Crouch P.E.(1993)On the geometry of Riemannian cubic polynomials Phys. Rev. Lett. 71 1661-1664
[9]  
Bruveris M.(2001)An integrable shallow water equation with peaked solitons Mem. Am. Math. Soc. 152 1-117
[10]  
Gay-Balmaz F.(2010)Lagrangian reduction by stages J. Geom. Mech. 2 417-444