On Asymptotic Stability in Energy Space of Ground States for Nonlinear Schrödinger Equations

被引:0
作者
Scipio Cuccagna
Tetsu Mizumachi
机构
[1] DISMI University of Modena and Reggio Emilia,Faculty of Mathematics
[2] Kyushu University,undefined
来源
Communications in Mathematical Physics | 2008年 / 284卷
关键词
Soliton; Solitary Wave; Asymptotic Stability; Energy Space; Discrete Mode;
D O I
暂无
中图分类号
学科分类号
摘要
We consider nonlinear Schrödinger equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$iu_t +\Delta u +\beta (|u|^2)u=0\, ,\, \text{for} (t,x)\in \mathbb{R}\times \mathbb{R}^d,$$\end{document} where d ≥ 3 and β is smooth. We prove that symmetric finite energy solutions close to orbitally stable ground states converge to a sum of a ground state and a dispersive wave as t → ∞ assuming the so called the Fermi Golden Rule (FGR) hypothesis. We improve the “sign condition” required in a recent paper by Gang Zhou and I.M.Sigal.
引用
收藏
相关论文
共 57 条
  • [1] Buslaev V.S.(1993)Scattering for the nonlinear Schrödinger equation: states close to a soliton St. Petersburg Math. J. 4 1111-1142
  • [2] Perelman G.S.(2003)On the asymptotic stability of solitary waves of Nonlinear Schrödinger equations Ann. Inst. H. Poincaré. An. Nonlin. 20 419-475
  • [3] Buslaev V.S.(1982)Orbital stability of standing waves for nonlinear Schrödinger equations Commun. Math. Phys. 85 549-561
  • [4] Sulem C.(2003)On asymptotic stability of ground states of NLS Rev. Math. Phys. 15 877-903
  • [5] Cazenave T.(2005)Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear Schrodinger problem J. Math. Phys. 46 053520-29
  • [6] Lions P.L.(2005)Spectra of positive and negative energies in the linearization of the NLS problem Comm. Pure Appl. Math. 58 1-312
  • [7] Cuccagna S.(2000)A note on asymptotic uniqueness for some nonlinearities which change sign Bull. Austral. Math. Soc. 61 305-108
  • [8] Cuccagna S.(2003)Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities Physica D 175 96-197
  • [9] Pelinovsky D.(1987)Stability of solitary waves in the presence of symmetries, I J. Funct. An. 74 160-348
  • [10] Cuccagna S.(1990)Stability of solitary waves in the presence of symmetries, II Jour. Funct. An. 94 308-3584