A monotone finite volume method for time fractional Fokker-Planck equations

被引:0
|
作者
Yingjun Jiang
Xuejun Xu
机构
[1] Changsha University of Science and Technology,School of Mathematics and Statistics
[2] Chinese Academy of Sciences,Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science
[3] Tongji University,School of Mathematical Sciences
来源
Science China Mathematics | 2019年 / 62卷
关键词
time fractional Fokker-Planck equations; finite volume methods; monotone convergence; 65M12; 65M06; 35S10;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a monotone finite volume method for the time fractional Fokker-Planck equations and theoretically prove its unconditional stability. We show that the convergence rate of this method is of order 1 in the space and if the space grid becomes suffciently fine, the convergence rate can be improved to order 2. Numerical results are given to support our theoretical findings. One characteristic of our method is that it has monotone property such that it keeps the nonnegativity of some physical variables such as density, concentration, etc.
引用
收藏
页码:783 / 794
页数:11
相关论文
共 50 条
  • [1] A monotone finite volume method for time fractional Fokker-Planck equations
    Yingjun Jiang
    Xuejun Xu
    ScienceChina(Mathematics), 2019, 62 (04) : 783 - 794
  • [2] A monotone finite volume method for time fractional Fokker-Planck equations
    Jiang, Yingjun
    Xu, Xuejun
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (04) : 783 - 794
  • [3] Finite Volume Methods for N-Dimensional Time Fractional Fokker-Planck Equations
    Zhou, Shuaihu
    Jiang, Yingjun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (06) : 3167 - 3186
  • [4] FINITE ELEMENT METHOD FOR THE SPACE AND TIME FRACTIONAL FOKKER-PLANCK EQUATION
    Deng, Weihua
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 204 - 226
  • [5] Thermodynamics and fractional Fokker-Planck equations
    Sokolov, IM
    PHYSICAL REVIEW E, 2001, 63 (05):
  • [6] A high order compact finite difference scheme for time fractional Fokker-Planck equations
    Vong, Seakweng
    Wang, Zhibo
    APPLIED MATHEMATICS LETTERS, 2015, 43 : 38 - 43
  • [7] Numerical Method for the Time Fractional Fokker-Planck Equation
    Cao, Xue-Nian
    Fu, Jiang-Li
    Huang, Hu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 848 - 863
  • [8] Collocation Finite Element Method for the Fractional Fokker-Planck Equation
    Karabenli, Hatice
    Esen, Alaattin
    Ucar, Yusuf
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2024,
  • [9] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [10] Finite Volume Methods for N-Dimensional Time Fractional Fokker–Planck Equations
    Shuaihu Zhou
    Yingjun Jiang
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 3167 - 3186