Eigenvalue for a problem involving the fractional (p, q)-Laplacian operator and nonlinearity with a singular and a supercritical Sobolev growth

被引:0
|
作者
A. L. A. de Araujo
A. H. S. Medeiros
机构
[1] Universidade Federal de Viçosa,Departamento de Matemática
来源
Analysis and Mathematical Physics | 2024年 / 14卷
关键词
Eigenvalue problem; Fractional ; -Laplacian; Sobolev spaces; Supercritical Sobolev growth; 35J75; 35R11; 35J67; 35A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are interested in studying the multiplicity, uniqueness, and nonexistence of solutions for a class of singular elliptic eigenvalue problems for the Dirichlet fractional (p, q)-Laplacian. The nonlinearity considered involves supercritical Sobolev growth. Our approach is variational together with the sub- and supersolution methods, and in this way we can address a wide range of problems not yet contained in the literature. Even when W0s1,p(Ω)↪L∞Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s_1,p}_0(\Omega ) \hookrightarrow L^{\infty }\left( \Omega \right) $$\end{document} failing, we establish ‖u‖L∞Ω≤C[u]s1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert u\Vert _{L^{\infty }\left( \Omega \right) } \le C[u]_{s_1,p}$$\end{document} (for some C>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C>0$$\end{document} ), when u is a solution.
引用
收藏
相关论文
共 50 条
  • [1] Eigenvalue for a problem involving the fractional (p, q)-Laplacian operator and nonlinearity with a singular and a supercritical Sobolev growth
    de Araujo, A. L. A.
    Medeiros, A. H. S.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (02)
  • [2] ON THE NONLINEAR EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN OPERATOR WITH SINGULAR WEIGHT
    Harcha, H.
    Chakrone, O.
    Tsouli, N.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [3] ON THE NONLINEAR EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN OPERATOR WITH SINGULAR WEIGHT
    Harcha, H.
    Chakrone, O.
    Tsouli, N.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [4] ON THE NONLINEAR EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN OPERATOR WITH SINGULAR WEIGHT
    Harcha H.
    Chakrone O.
    Tsouli N.
    Journal of Nonlinear Functional Analysis, 2022, 2022
  • [5] Singular elliptic problem involving a fractional p-Laplacian with discontinuous nonlinearity
    Hanaâ Achour
    Sabri Bensid
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [6] Singular elliptic problem involving a fractional p-Laplacian with discontinuous nonlinearity
    Achour, Hanaa
    Bensid, Sabri
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (03)
  • [7] A multiplicity results for a singular problem involving the fractional p-Laplacian operator
    Ghanmi, A.
    Saoudi, K.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (09) : 1199 - 1216
  • [8] On an eigenvalue problem involving the fractional (s, p)-Laplacian
    Maria Fărcăşeanu
    Fractional Calculus and Applied Analysis, 2018, 21 : 94 - 103
  • [9] EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p(x)-LAPLACIAN OPERATOR
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    ADVANCES IN OPERATOR THEORY, 2019, 4 (02): : 539 - 555
  • [10] ON AN EIGENVALUE PROBLEM INVOLVING THE FRACTIONAL (s, p)-LAPLACIAN
    Farcaseanu, Maria
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) : 94 - 103