The varieties of semilattice-ordered semigroups satisfying x3≈x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^3\approx x$$\end{document} and xy≈yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy\approx yx$$\end{document}

被引:0
作者
Miaomiao Ren
Xianzhong Zhao
机构
[1] Northwest University,School of Mathematics
关键词
Semilattice-ordered Burnside semigroup; Lattice; Subdirectly irreducible member; Variety; 0-Group; 16Y60; 08B05; 08B15; 20M07;
D O I
10.1007/s10998-016-0116-5
中图分类号
学科分类号
摘要
The aim of this paper is to study the varieties of semilattice-ordered Burnside semigroups satisfying x3≈x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^3\approx x$$\end{document} and xy≈yx.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy\approx yx.$$\end{document} It is shown that the collection of all such varieties forms a distributive lattice of order 9. Also, all of them are finitely based and finitely generated. This gives a generalization and expansion of the results obtained by McKenzie and Romanowska (Contrib Gen Algebra Proc Klagenf Conf 1978 1:213–218, 1979).
引用
收藏
页码:158 / 170
页数:12
相关论文
共 33 条
[1]  
Dershowitz N(1993)Semigroups satisfying Lect. Notes Comput. Sci. 656 307-314
[2]  
do Lago AP(1996)On the Burnside semigroups Int. J. Algebra Comput. 6 179-227
[3]  
Gajdoš P(2010)On free semilattice-ordered semigroups satisfying Semigroup Forum 80 92-104
[4]  
Kuřil M(2005)Varieties generated by ordered bands I Order 22 109-128
[5]  
Ghosh S(1952)On semigroups in which Proc. Camb. Philos. Soc. 48 35-40
[6]  
Pastijn F(1971)Subdirect decomposition of distributive quasilattices Fundam. Math. 71 161-163
[7]  
Zhao XZ(2005)On varieties of semilattice-ordered semigroups Semigroup Forum 71 27-48
[8]  
Green JA(1979)Varieties of Contrib. Gen. Algebra (Proc. Klagenf. Conf. 1978) 1 213-218
[9]  
Rees D(2005)-distributive bisemilattices Order 22 129-143
[10]  
Kalman JA(2005)Varieties generated by ordered bands II Algebra Univers. 54 301-321