Finite Groups with Systems of Σ-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{F}$$\end{document}-Embedded Subgroups

被引:0
作者
Yuemei Mao
Xiaojian Ma
机构
[1] Shanxi Datong University,Institute of Quantum Information Science
[2] University of Datong of Shanxi,School of Mathematics and Computer Science
关键词
Finite group; -abnormal pair; Σ-; -embedded; -supersoluble groups; -soluble groups; 20D10; 20D20; 20D35;
D O I
10.1007/s13226-020-0440-6
中图分类号
学科分类号
摘要
Let F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{F}$$\end{document} denote a class of groups. A maximal subgroup M of G is called F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{F}$$\end{document}-abnormal provided G/MG ∉ F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{F}$$\end{document}. We say that (K, H) is an F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{F}$$\end{document}-abnormal pair of G provided K is a maximal F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{F}$$\end{document}-abnormal subgroup of H. Let Σ = {G0 ≤ G1 ≤ G2 ≤ … ≤ Gn} be a subgroup series of G. A subgroup H of G is said to be Σ-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{F}$$\end{document}-embedded in G if H either covers or avoids every F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{F}$$\end{document}-abnormal pair (K, H) such that Gi−1≤ K < H ≤ Gi for some i ∈ {0, 1, …, n}. In this paper, some new characterizations of p-supersoluble and p-soluble are given by discussing the properties of Σ-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{F}$$\end{document}-embedded of subgroups.
引用
收藏
页码:901 / 914
页数:13
相关论文
共 5 条
  • [1] Guo W(2011)Finite groups with systems of Σ-embedded subgroups Science China Mathematics 54 1909-1926
  • [2] Skiba A N(1978)Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband each enthalten Arch. Math. (Basel) 30 225-228
  • [3] Kegel O H(2012)On J. Algebra 372 275-292
  • [4] Guo W(undefined)Φ*-hypercentral subgroups of finite groups undefined undefined undefined-undefined
  • [5] Skiba A N(undefined)undefined undefined undefined undefined-undefined