Cyclic Pólya Ensembles on the Unitary Matrices and their Spectral Statistics

被引:0
作者
Mario Kieburg
Shi-Hao Li
Jiyuan Zhang
Peter J. Forrester
机构
[1] University of Melbourne,School of Mathematics and Statistics
[2] Sichuan University,Department of Mathematics
[3] KU Leuven,Department of Mathematics
来源
Constructive Approximation | 2023年 / 57卷
关键词
Random matrices; Spherical transform; Bilateral Hypergeometric series; Spectral statistics; 60B20; 15B52; 43A85; 43A90;
D O I
暂无
中图分类号
学科分类号
摘要
A framework to study the eigenvalue probability density function for products of unitary random matrices with an invariance property is developed. This involves isolating a class of invariant unitary matrices, to be referred to as cyclic Pólya ensembles, and examining their properties with respect to the spherical transform on U(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm U(N)$$\end{document}. Included in the cyclic Pólya ensemble class are Haar invariant unitary matrices, the circular Jacobi ensemble, known in relation to the Fisher-Hartwig singularity in the theory of Toeplitz determinants, as well as the heat kernel for Brownian motion on the unitary group. We define cyclic Pólya frequency functions and show their relation to the cyclic Pólya ensembles, and give a uniqueness statement for the corresponding weights. The natural appearance of bilateral hypergeometric series is highlighted, with this special function playing the role of the Meijer G-function in the transform theory of unitary invariant product of positive definite matrices. We construct a family of functions forming bi-orthonormal pairs which underly the correlation kernel of the corresponding determinantal point processes, and furthermore obtain an integral formula for the correlation kernel involving just two of these functions.
引用
收藏
页码:1063 / 1108
页数:45
相关论文
共 67 条
  • [1] Akemann G(2015)Recent exact and asymptotic results for products of independent random matrices Acta Phys. Polon. B 46 1747-1784
  • [2] Ipsen JR(1886)Notes sur une relation les intégrales définies des produits des fonctions, Mém. de la Soc. Sci Bordeaux 2 1-14
  • [3] Andréief KA(1994)Formulas for the evaluation of Toeplitz determinants with rational generating functions Math. Nach. 170 5-18
  • [4] Basor EL(1998)Biorthogonal ensembles Nucl. Phys. B 536 704-732
  • [5] Forrester PJ(2002)Fredholm determinants, Jimbo-Miwa-Ueno Commun. Pure Appl. Math. 55 1160-1230
  • [6] Borodin A(2015)-functions and representation theory Random Matrices: Theory Appl. 04 1550017-1299
  • [7] Borodin A(2017)Correlation kernels for sums and products of random matrices Random Matrix Th. Appl. 6 1730001-461
  • [8] Deift P(2011)Hurwitz and the origin of random matrix theory in mathematics Ann. Math. 174 1243-2160
  • [9] Claeys T(2012)Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities Bull. Inst. Math. Acad. Sin. (N.S.) 7 437-1198
  • [10] Kuijlaars ABJ(2011)Eigenvalues of toeplitz matrices in the bulk of the spectrum Int. Math. Res. Not. IMRN, 9 2117-256