Existence of Nondecreasing and Continuous Solutions of an Integral Equation with Linear Modification of the Argument

被引:0
作者
J. CABALLERO
B. LÓPEZ
K. SADARANGANI
机构
[1] Universidad de Las Palmas de Gran Canaria,Departamento de Matemáticas
[2] Campus de Tafira Baja,undefined
来源
Acta Mathematica Sinica, English Series | 2007年 / 23卷
关键词
measure of noncompactness; fixed point theorem; nondecreasing solutions; 45M99; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
We use a technique associated with measures of noncompactness to prove the existence of nondecreasing solutions to an integral equation with linear modification of the argument in the space C[0, 1]. In the last thirty years there has been a great deal of work in the field of differential equations with a modified argument. A special class is represented by the differential equation with affine modification of the argument which can be delay differential equations or differential equations with linear modifications of the argument. In this case we study the following integral equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x{\left( t \right)} = a{\left( t \right)} + {\left( {Tx} \right)}{\left( t \right)}{\int_0^{\sigma {\left( t \right)}} {u{\left( {t,s,x{\left( s \right)},x{\left( {\lambda s} \right)}} \right)}ds} }\;0 < \lambda < 1 $$\end{document} which can be considered in connection with the following Cauchy problem x'(t) = u(t, s, x(t), x(λt)), t ∈ [0, 1], 0 < λ < 1 x(0) = u0.
引用
收藏
页码:1719 / 1728
页数:9
相关论文
共 50 条
  • [41] NONDECREASING SOLUTIONS OF FRACTIONAL QUADRATIC INTEGRAL EQUATIONS INVOLVING ERDELYI-KOBER SINGULAR KERNELS
    Xin, Jie
    Zhu, Chun
    Wang, Jinrong
    Chen, Fulai
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2014, 44 (01) : 73 - 88
  • [42] Existence of solutions for some nonlinear integral equations
    Maleknejad, K.
    Nouri, K.
    Mollapourasl, R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (06) : 2559 - 2564
  • [43] Existence of Solutions for a Nonlinear Integral Equation via a Hybrid Fixed Point Theorem
    Biondini, Marco
    Cardinali, Tiziana
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 1259 - 1276
  • [44] Existence of Solutions for a Nonlinear Integral Equation via a Hybrid Fixed Point Theorem
    Marco Biondini
    Tiziana Cardinali
    Results in Mathematics, 2017, 71 : 1259 - 1276
  • [45] On Existence and Asymptotic Stability of Solutions of a Functional-Integral Equation of Fractional Order
    Darwish, Mohamed Abdalla
    Sadarangani, K.
    JOURNAL OF CONVEX ANALYSIS, 2010, 17 (02) : 413 - 426
  • [46] On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order
    Banas, Jozef
    O'Regan, Donal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 573 - 582
  • [47] Existence of Solutions to Non-Linear Quadratic Integral Equations via Measure of Non-Compactness
    Karmakar, Surajit
    Garai, Hiranmoy
    Dey, Lakshmi Kanta
    Chanda, Ankush
    FILOMAT, 2022, 36 (01) : 73 - 87
  • [48] Monotone continuous solutions of an equation in linear combination of alternative iterates
    Chen, Yeming
    Zeng, Yingying
    Zhang, Weinian
    Zhou, Linfeng
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, : 1518 - 1545
  • [49] Measures of Noncompactness in the Study of Asymptotically Stable and Ultimately Nondecreasing Solutions of Integral Equations
    Appell, Juergen
    Banas, Jozef
    Merentes, Nelson
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2010, 29 (03): : 251 - 273
  • [50] Existence and uniqueness of positive solutions to nonlinear fractional differential equation with integral boundary conditions
    Sihua Liang
    Yueqiang Song
    Lithuanian Mathematical Journal, 2012, 52 : 62 - 76