Existence of Nondecreasing and Continuous Solutions of an Integral Equation with Linear Modification of the Argument

被引:0
作者
J. CABALLERO
B. LÓPEZ
K. SADARANGANI
机构
[1] Universidad de Las Palmas de Gran Canaria,Departamento de Matemáticas
[2] Campus de Tafira Baja,undefined
来源
Acta Mathematica Sinica, English Series | 2007年 / 23卷
关键词
measure of noncompactness; fixed point theorem; nondecreasing solutions; 45M99; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
We use a technique associated with measures of noncompactness to prove the existence of nondecreasing solutions to an integral equation with linear modification of the argument in the space C[0, 1]. In the last thirty years there has been a great deal of work in the field of differential equations with a modified argument. A special class is represented by the differential equation with affine modification of the argument which can be delay differential equations or differential equations with linear modifications of the argument. In this case we study the following integral equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x{\left( t \right)} = a{\left( t \right)} + {\left( {Tx} \right)}{\left( t \right)}{\int_0^{\sigma {\left( t \right)}} {u{\left( {t,s,x{\left( s \right)},x{\left( {\lambda s} \right)}} \right)}ds} }\;0 < \lambda < 1 $$\end{document} which can be considered in connection with the following Cauchy problem x'(t) = u(t, s, x(t), x(λt)), t ∈ [0, 1], 0 < λ < 1 x(0) = u0.
引用
收藏
页码:1719 / 1728
页数:9
相关论文
共 11 条
[1]  
Carr undefined(1974)undefined Proc. Roy. Soc. Edinburgh Sect., A 74 165-undefined
[2]  
Dunkel undefined(1970)undefined Lect. Notes in Math. 144 49-undefined
[3]  
Hu undefined(1989)undefined Appl. Analysis 34 261-undefined
[4]  
Kulenović undefined(1995)undefined Czech. Math. J. 45 1-undefined
[5]  
Melvin undefined(1973)undefined Aequationes Math. 9 273-undefined
[6]  
Muresan undefined(1999)undefined Studia Univ. Babes–Bolyai, Mathematica XLIV 47-undefined
[7]  
Terjeki undefined(1995)undefined Acta, Sci. Math., Szeged 60 705-undefined
[8]  
Muresan undefined(2003)undefined Novi Sad J. Math. 33 1-undefined
[9]  
Banaś undefined(2001)undefined Comment. Math. 41 13-undefined
[10]  
Argyros undefined(1985)undefined Bull. Austral. Math. Soc. 32 275-undefined