A class of subspaces of Morrey spaces and norm inequalities on Riesz potential operators

被引:5
作者
Fofana I. [1 ]
Faléa F.R. [1 ]
Kpata B.A. [2 ]
机构
[1] Laboratoire de Mathématiques Fondamentales, UFR de Mathématiques et Informatique, Université Felix Houphouet Boigny, 22 BP 582
[2] Laboratoire de Mathématiques et Informatique, UFR des Sciences Fondamentales et Appliquées, Université Nangui Abrogoua, 02 BP 801
关键词
Amalgams spaces; Fractional maximal operator; Radon measure; Riesz potential;
D O I
10.1007/s13370-014-0241-3
中图分类号
学科分类号
摘要
We introduce two classes of Banach spaces F(q,p,α) and Tp,α 1≤q≤α≤p≤∞) which are subspaces of Herz spaces and Morrey spaces of functions and measures respectively. We study the Riesz potential operators in these spaces and obtain norm inequalities on these operators from which we deduce a necessary condition for a nonnegative Radon measure to have its Riesz potential in a given Lebesgue space. © 2014, African Mathematical Union and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:717 / 739
页数:22
相关论文
共 25 条
  • [1] Adams D.R., Hedberg L.I., Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften, (1996)
  • [2] Burenkov V.I., Guliyev V.S., Necessary and sufficient conditions for the boundedness of the Riesz potential in Local Morrey-type spaces, Potential Anal., 30, pp. 211-249, (2009)
  • [3] Chinillo S., Wheeden R.L., Lp estimates for fractionals integrals and Sobolev inequalities with applications to Schrödinger operator, Commun. Partial Differ. Equ., 10, 9, pp. 1077-1116, (1985)
  • [4] Douyon D., Fofana I., A Sobolev inequality for functions with locally bounded variation in, Ann. Math. Afr. Sér. 1, 1, pp. 49-67, (2010)
  • [5] Evans L.C., Gariepy R.F., Measure theory and fine properties of functions, (1992)
  • [6] Feuto J., Fofana I., Koua K., Weigthed norm inequalities for a maximal operator in some subspace of amalgams, Canad. Math. Bull., 53, 2, pp. 263-277, (2010)
  • [7] Fofana I., Etude d’une classe d’espaces de fonctions contenant les espaces de Lorentz, Afrika Mat. (2), 1, pp. 29-50, (1988)
  • [8] Fofana I., Continuité de l’intégrale fractionnaire et espaces $$(L^{q}, l^{p})^{alpha }$$(Lq,lp)α, C.R.A.S. Paris, t.308, Série I, pp. 525-527, (1989)
  • [9] Fofana I., Espace $$(L^{q}, l^{p})^{alpha }(R^{d}
  • [10] n)$$(Lq,lp)α(Rd