Characterization of Multiwavelets and MRA Wavelets in Hs(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s(\mathbb {F})$$\end{document}

被引:0
作者
Ashish Pathak
Dileep Kumar
机构
[1] Banaras Hindu University,Department of Mathematics, Institute of Science
关键词
Wavelets; Local fields; Sobolev space; Fourier transform; Affine frame; Quasi-affine frame; Multiresolution analysis; 42C40; 42C15; 11S85; 43A70;
D O I
10.1007/s40819-019-0725-9
中图分类号
学科分类号
摘要
In the continuation of the paper [Pathak and Singh Wavelet in Sobolev space over local fields of positive characteristic, Int. J. of Wavelets Multi. Inf. Process,16 3 (2018)], we provide the characterizations of multiwavelets in Sobolev space over local fields of positive characteristic (Hs(F))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( H^s(\mathbb {F}))$$\end{document} by exploiting the theory of affine frame and quasi-affine frame and one example is presented. Further, the wavelets associated with MRA in Hs(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^s(\mathbb {F})$$\end{document} are also characterized and an example is presented.
引用
收藏
相关论文
共 19 条
[1]  
Gripenberg G(1995)A necessary and sufficient condition for the existance of a father wavelet Stud. Math. 114 207-226
[2]  
Wang K(1997)A characterization of functions that generate wavelet and related expansion J. Fourier Anal. Appl. 3 883-906
[3]  
Frazier M(2001)On characterization of multiwavelets in Proc. Am. Math. Soc. 129 3265-3274
[4]  
Garrigos G(2015)Characterization of wavelets and MRA wavelets on local fields of positive characteristic Collect. Math. 66 33-53
[5]  
Weiss G(2004)Multiresolution analysis on local fields J. Math. Anal. Appl. 294 523-532
[6]  
Bownik M(2018)Wavelet in Sobolve space over local fields of positive characteriscic Int. J. Wavelets Multiresolut. Inf. Process. 16 3-456
[7]  
Behera B(2004)A wavelet theory for local fields and related groups J. Geom. Anal. 14 423-121
[8]  
Jahan Q(2016)Continuous wavelet transform on local fields Bol. Soc. Parana. Mat. 34 113-17
[9]  
Jiang H(1998)Affine frames, quasi-affine frames, and their duals Adv. Comput. Math. 8 1-undefined
[10]  
Li D(undefined)undefined undefined undefined undefined-undefined