A Symplectic Slice Theorem

被引:0
|
作者
Juan-Pablo Ortega
Tudor S. Ratiu
机构
[1] CNRS-UNSA,Institut Nonlinéaire de Nice, UMR 129
[2] École Polytechnique Fédérale,Département de Mathématiques
来源
Letters in Mathematical Physics | 2002年 / 59卷
关键词
symplectic; slice; momentum map; reconstruction equations; Chu map;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a model for an open invariant neighborhood of any orbit in a symplectic manifold endowed with a canonical proper symmetry. Our results generalize the constructions of Marle and Guillemin and Sternberg for canonical symmetries that have an associated momentum map. In these papers the momentum map played a crucial role in the construction of the tubular model. The present work shows that in the construction of the tubular model, the so-called Chu map, can be used instead, which exists for any canonical action, unlike the momentum map. Hamilton's equations for any invariant Hamiltonian function take on a particularly simple form in these tubular variables. As an application we will find situations, that we will call tubewise Hamiltonian, in which the existence of a standard momentum map in invariant neighborhoods is guaranteed.
引用
收藏
页码:81 / 93
页数:12
相关论文
共 50 条
  • [1] A symplectic slice theorem
    Ortega, JP
    Ratiu, TS
    LETTERS IN MATHEMATICAL PHYSICS, 2002, 59 (01) : 81 - 93
  • [2] A b-symplectic slice theorem
    Braddell, Roisin
    Kiesenhofer, Anna
    Miranda, Eva
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (01) : 90 - 112
  • [3] Symplectic slice for subgroup actions
    Fontaine, Marine
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 61 : 82 - 96
  • [4] A SYMPLECTIC RIGIDITY THEOREM
    WEINSTEIN, A
    DUKE MATHEMATICAL JOURNAL, 1983, 50 (04) : 1121 - 1125
  • [5] A SYMPLECTIC RIGIDITY THEOREM
    BATES, L
    MANUSCRIPTA MATHEMATICA, 1989, 66 (01) : 109 - 111
  • [6] BRANCHING THEOREM OF SYMPLECTIC GROUPS
    LEE, CY
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1974, 17 (04): : 535 - 545
  • [7] An extension theorem in symplectic geometry
    Schlenk, F
    MANUSCRIPTA MATHEMATICA, 2002, 109 (03) : 329 - 348
  • [8] A symplectic proof of a theorem of Franks
    Collier, Brian
    Kerman, Ely
    Reiniger, Benjamin M.
    Turmunkh, Bolor
    Zimmer, Andrew
    COMPOSITIO MATHEMATICA, 2012, 148 (06) : 1969 - 1984
  • [9] A finiteness theorem on symplectic singularities
    Namikawa, Yoshinori
    COMPOSITIO MATHEMATICA, 2016, 152 (06) : 1225 - 1236
  • [10] An extension theorem in symplectic geometry
    Felix Schlenk
    manuscripta mathematica, 2002, 109 : 329 - 348