共 50 条
Local Regularity Criteria in Terms of One Velocity Component for the Navier–Stokes Equations
被引:0
|作者:
Kyungkeun Kang
Dinh Duong Nguyen
机构:
[1] Yonsei University,Department of Mathematics
来源:
Journal of Mathematical Fluid Mechanics
|
2023年
/
25卷
关键词:
Local energy solutions;
Suitable weak solutions;
Navier–Stokes equations;
one velocity component;
Ladyzhenskaya–Prodi–Serrin regularity condition;
35Q30;
76D03;
76D05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This paper is devoted to presenting new interior regularity criteria in terms of one velocity component for weak solutions to the Navier–Stokes equations in three dimensions. It is shown that the velocity is regular near a point z if its scaled LtpLxq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^p_tL^q_x$$\end{document}-norm of some quantities related to the velocity field is finite and the scaled LtpLxq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^p_tL^q_x$$\end{document}-norm of one velocity component is sufficiently small near z.
引用
收藏
相关论文