Photonic scheme of quantum phase estimation for quantum algorithms via quantum dots

被引:0
作者
Jino Heo
Seong-Gon Choi
机构
[1] Chungbuk National University,Research Institute for Computer and Information Communication (RICIC)
[2] Chungbuk National University,College of Electrical and Computer Engineering
来源
Quantum Information Processing | 2022年 / 21卷
关键词
Quantum phase estimation; Quantum algorithm; Controlled-unitary gate; Quantum dot;
D O I
暂无
中图分类号
学科分类号
摘要
Various quantum algorithms depend on quantum phase estimation (QPE) as basic blocks or main subroutines to leverage superposition and entanglement during quantum computations. The QPE algorithm estimates the unknown phase of an eigenvalue corresponding to an eigenstate of an arbitrary unitary operator. We propose the photonic scheme of a QPE scheme comprising controlled-unitary gates based on quantum dots confined in optical cavities. For the reliable performance of the proposed QPE scheme constituting an arrangement of controlled-unitary gates, we evaluate the proposed quantum dot system under the effects of vacuum noise and leaky modes in an experimental implementation of the gates.
引用
收藏
相关论文
共 278 条
[1]  
Martin-Lopez E(2012)Experimental realization of Shor's quantum factoring algorithm using qubit recycling Nat. Photonics 6 773-undefined
[2]  
Laing A(2016)Realization of a scalable Shor algorithm Science 351 1068-undefined
[3]  
Lawson T(2019)Factoring larger integers with fewer qubits via quantum annealing with optimized parameters Sci. China-Phys. Mech. Astron. 62 60311-undefined
[4]  
Alvarez R(2004)Exact quantum Fourier transforms and discrete logarithm algorithms Int. J. Quantum Inf. 2 91-undefined
[5]  
Zhou XQ(2001)Quantum factoring, discrete logarithms, and the hidden subgroup problem Comput. Sci. Eng. 3 34-undefined
[6]  
O'Brien JL(2017)An efficient quantum algorithm for the hidden subgroup problem over some non-abelian groups TEMA 18 215-undefined
[7]  
Monz T(2013)Faster phase estimation Quant. Inf. Comput. 14 306-undefined
[8]  
Nigg D(2019)Photonic scheme of quantum phase estimation for quantum algorithms via cross-Kerr nonlinearities under decoherence effect Opt. Express 27 31023-undefined
[9]  
Martinez EA(1996)Semiclassical Fourier transform for quantum computation Phys. Rev. Lett. 76 3228-undefined
[10]  
Brandl MF(2007)Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: a two-qubit benchmark Phys. Rev. A 76 030306(R)-undefined