Ferroelectric capacitors and field-effect transistors as in-memory computing elements for machine learning workloads

被引:3
|
作者
Yu, Eunseon [1 ]
Kumar, Gaurav K. [1 ]
Saxena, Utkarsh [1 ]
Roy, Kaushik [1 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
FUTURE;
D O I
10.1038/s41598-024-59298-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study discusses the feasibility of Ferroelectric Capacitors (FeCaps) and Ferroelectric Field-Effect Transistors (FeFETs) as In-Memory Computing (IMC) elements to accelerate machine learning (ML) workloads. We conducted an exploration of device fabrication and proposed system-algorithm co-design to boost performance. A novel FeCap device, incorporating an interfacial layer (IL) and Hf 0.5 Zr 0.5 O 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hf}_{0.5}\text {Zr}_{0.5}\text {O}_2$$\end{document} (HZO), ensures a reduction in operating voltage and enhances HZO scaling while being compatible with CMOS circuits. The IL also enriches ferroelectricity and retention properties. When integrated into crossbar arrays, FeCaps and FeFETs demonstrate their effectiveness as IMC components, eliminating sneak paths and enabling selector-less operation, leading to notable improvements in energy efficiency and area utilization. However, it is worth noting that limited capacitance ratios in FeCaps introduced errors in multiply-and-accumulate (MAC) computations. The proposed co-design approach helps in mitigating these errors and achieves high accuracy in classifying the CIFAR-10 dataset, elevating it from a baseline of 10% to 81.7%. FeFETs in crossbars, with a higher on-off ratio, outperform FeCaps, and our proposed charge-based sensing scheme achieved at least an order of magnitude reduction in power consumption, compared to prevalent current-based methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] The Critical Role of Charge Balance on the Memory Characteristics of Ferroelectric Field-Effect Transistors
    Si, Mengwei
    Ye, Peide D.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (10) : 5108 - 5113
  • [22] Reconfigurable logic-in-memory circuits with ferroelectric nanosheet field-effect transistors
    Cheng, Tian-Tong
    Li, Jia-Cheng
    Yang, Yu-Xi
    Li, Qiang
    Hsu, Hsiao-Hsuan
    Zheng, Zhi-Wei
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [23] Modeling of strain effects on the device behaviors of ferroelectric memory field-effect transistors
    Yang, Feng
    Hu, Guangda
    Wu, Weibing
    Yang, Changhong
    Wu, Haitao
    Tang, Minghua
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (08)
  • [24] Degradation mechanisms of organic ferroelectric field-effect transistors used as nonvolatile memory
    Ng, Tse Nga
    Russo, Beverly
    Arias, Ana Claudia
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
  • [25] Physics of organic ferroelectric field-effect transistors
    Brondijk, Jakob J.
    Asadi, Kamal
    Blom, Paul W. M.
    de Leeuw, Dago M.
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2012, 50 (01) : 47 - 54
  • [26] Variability Analysis for Ferroelectric Field-Effect Transistors
    Choe, Gihun
    Yu, Shimeng
    2021 5TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE (EDTM), 2021,
  • [27] Graphene Field-Effect Transistors with Ferroelectric Gating
    Zheng, Yi
    Ni, Guang-Xin
    Toh, Chee-Tat
    Tan, Chin-Yaw
    Yao, Kui
    Oezyilmaz, Barbaros
    PHYSICAL REVIEW LETTERS, 2010, 105 (16)
  • [28] Two-dimensional van der Waals ferroelectric field-effect transistors toward nonvolatile memory and neuromorphic computing
    Lin, Xiankai
    Huang, Xuguang
    Zhang, Qian
    Yi, Jianxian
    Liu, Shenghua
    Liang, Qijie
    APPLIED PHYSICS LETTERS, 2023, 123 (18)
  • [29] A review of in-memory computing for machine learning: architectures, options
    Snasel, Vaclav
    Dang, Tran Khanh
    Kueng, Josef
    Kong, Lingping
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2024, 20 (01) : 24 - 47
  • [30] Ferroelectric-gated ReS2 field-effect transistors for nonvolatile memory
    Liu, Li
    Wang, Hao
    Wu, Qilong
    Wu, Kang
    Tian, Yuan
    Yang, Haitao
    Shen, Cheng Min
    Bao, Lihong
    Qin, Zhihui
    Gao, Hong-Jun
    NANO RESEARCH, 2022, 15 (06) : 5443 - 5449