Ferroelectric capacitors and field-effect transistors as in-memory computing elements for machine learning workloads

被引:3
|
作者
Yu, Eunseon [1 ]
Kumar, Gaurav K. [1 ]
Saxena, Utkarsh [1 ]
Roy, Kaushik [1 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
FUTURE;
D O I
10.1038/s41598-024-59298-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study discusses the feasibility of Ferroelectric Capacitors (FeCaps) and Ferroelectric Field-Effect Transistors (FeFETs) as In-Memory Computing (IMC) elements to accelerate machine learning (ML) workloads. We conducted an exploration of device fabrication and proposed system-algorithm co-design to boost performance. A novel FeCap device, incorporating an interfacial layer (IL) and Hf 0.5 Zr 0.5 O 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {Hf}_{0.5}\text {Zr}_{0.5}\text {O}_2$$\end{document} (HZO), ensures a reduction in operating voltage and enhances HZO scaling while being compatible with CMOS circuits. The IL also enriches ferroelectricity and retention properties. When integrated into crossbar arrays, FeCaps and FeFETs demonstrate their effectiveness as IMC components, eliminating sneak paths and enabling selector-less operation, leading to notable improvements in energy efficiency and area utilization. However, it is worth noting that limited capacitance ratios in FeCaps introduced errors in multiply-and-accumulate (MAC) computations. The proposed co-design approach helps in mitigating these errors and achieves high accuracy in classifying the CIFAR-10 dataset, elevating it from a baseline of 10% to 81.7%. FeFETs in crossbars, with a higher on-off ratio, outperform FeCaps, and our proposed charge-based sensing scheme achieved at least an order of magnitude reduction in power consumption, compared to prevalent current-based methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] FePIM: Contention-Free In-Memory Computing Based on Ferroelectric Field-Effect Transistors
    Chen, Xiaoming
    Wu, Yuping
    Han, Yinhe
    2021 26TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2021, : 114 - 119
  • [2] MEMORY MODES OF FERROELECTRIC FIELD-EFFECT TRANSISTORS
    ITO, K
    TSUCHIYA, H
    SOLID-STATE ELECTRONICS, 1977, 20 (06) : 529 - 537
  • [3] Broad-Purpose In-Memory Computing for Signal Monitoring and Machine Learning Workloads
    Jain, Saurabh
    Lin, Longyang
    Alioto, Massimo
    IEEE SOLID-STATE CIRCUITS LETTERS, 2020, 3 : 394 - 397
  • [4] Evaluation of polarization characteristics in metal/ferroelectric/semiconductor capacitors and ferroelectric field-effect transistors
    Toprasertpong, Kasidit
    Tahara, Kento
    Takenaka, Mitsuru
    Takagi, Shinichi
    APPLIED PHYSICS LETTERS, 2020, 116 (24)
  • [5] An analytical interpretation of the memory window in ferroelectric field-effect transistors
    Yoo, Sijung
    Choe, Duk-Hyun
    Lee, Hyun Jae
    Jo, Sanghyun
    Lee, Yun Sung
    Park, Yoonsang
    Kim, Ki-Hong
    Kim, Donghoon
    Nam, Seung-Geol
    APPLIED PHYSICS LETTERS, 2023, 123 (22)
  • [6] A Polarization-Switching, Charge-Trapping, Modulated Arithmetic Logic Unit for In-Memory Computing Based on Ferroelectric Fin Field-Effect Transistors
    Zhang, Zhaohao
    Luo, Yanna
    Cui, Yan
    Yang, Hong
    Zhang, Qingzhu
    Xu, Gaobo
    Wu, Zhenhua
    Xiang, Jinjuan
    Liu, Qianqian
    Yin, Huaxiang
    Mao, Shujuan
    Wang, Xiaolei
    Li, Junjie
    Zhang, Yongkui
    Luo, Qing
    Gao, Jianfeng
    Xiong, Wenjuan
    Liu, Jinbiao
    Li, Yongliang
    Li, Junfeng
    Luo, Jun
    Wang, Wenwu
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 6967 - 6976
  • [7] Scaling Effects on Memory Characteristics of Ferroelectric Field-Effect Transistors
    Lee, Kitae
    Yim, Jiyong
    Shin, Wonjun
    Kim, Sihyun
    Kwon, Daewoong
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (05) : 805 - 808
  • [8] Memory Window in Ferroelectric Field-Effect Transistors: Analytical Approach
    Toprasertpong, Kasidit
    Takenaka, Mitsuru
    Takagi, Shinichi
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (12) : 7113 - 7119
  • [9] In-Memory Computing for Machine Learning and Deep Learning
    Lepri, N.
    Glukhov, A.
    Cattaneo, L.
    Farronato, M.
    Mannocci, P.
    Ielmini, D.
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2023, 11 : 587 - 601
  • [10] Nonvolatile ferroelectric field-effect transistors
    Chai, Xiaojie
    Jiang, Jun
    Zhang, Qinghua
    Hou, Xu
    Meng, Fanqi
    Wang, Jie
    Gu, Lin
    Zhang, David Wei
    Jiang, An Quan
    NATURE COMMUNICATIONS, 2020, 11 (01)