Lie ideals of graded associative algebras

被引:0
作者
Hannes Bierwirth
Mercedes Siles Molina
机构
[1] Universidad de Málaga,Departamento de Álgebra, Geometría y Topología
来源
Israel Journal of Mathematics | 2012年 / 191卷
关键词
Associative Algebra; Jordan Algebra; Jacobi Identity; Homogeneous Element; Prime Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Lie structure of graded associative algebras. Essentially, we analyze the relation between Lie and associative graded ideals, and between Lie and associative graded derivations. Gathering together results on both directions, we compute maximal graded algebras of quotients of graded Lie algebras that arise from associative algebras. We also show that the Lie algebra Dergr(A) of graded derivations of a graded semiprime associative algebra is strongly non-degenerate (modulo a certain ideal containing the center of Dergr(A)).
引用
收藏
页码:111 / 136
页数:25
相关论文
共 19 条
[1]  
Aranda Pino G.(2006)The maximal left quotient algebra of a graded algebra Acta Mathematica Sinica 22 261-270
[2]  
Siles Molina M.(1993)Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings Transactions of the American Mathematical Society 335 525-546
[3]  
Brešar M.(2009)Computing the maximal algebra of quotients of a Lie algebra Forum Mathematicum 21 601-620
[4]  
Brešar M.(2004)The socle of a nondegenerate Lie algebra Journal of Algebra 280 635-654
[5]  
Perera F.(1970)On the Lie structure of an associative algebra Journal of Algebra 14 561-571
[6]  
Sánchez Ortega J.(1989)Martindale systems of symmetric quotients Algebras, Groups and Geometries 6 153-237
[7]  
Siles Molina M.(1987)Computing the symmetric algebra of quotients Journal of Algebra 105 207-235
[8]  
Draper Fontanals C.(2008)Strongly nondegenerate Lie algebras Proceedings of the American Mathematical Society 136 4115-4124
[9]  
Fernández López A.(2010)Algebras of quotients of graded Lie algebras Journal of Algebra 323 2002-2015
[10]  
García E.(2004)Algebras of quotients of Lie algebras Journal of Pure and Applied Algebra 188 175-188