A Direct Proof of the Nekhoroshev Theorem for Nearly Integrable Symplectic Maps

被引:0
作者
Massimiliano Guzzo
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica Pura ed Applicata
来源
Annales Henri Poincaré | 2004年 / 5卷
关键词
Normal Form; Mathematical Method; Direct Proof; Inverse Power; Small Remainder;
D O I
暂无
中图分类号
学科分类号
摘要
We provide the direct proof of the Nekhoroshev theorem on the stability of nearly integrable analytic symplectic maps. Specifically, we prove the stability of the actions for a number of iterations which grows exponentially with an inverse power of the norm of the perturbation by conjugating the generating function of the map to suitable normal forms with exponentially small remainder.
引用
收藏
页码:1013 / 1039
页数:26
相关论文
empty
未找到相关数据