Einstein 4-manifolds and nonpositive isotropic curvature

被引:0
作者
A. Brasil
E. Costa
F. Vitório
机构
[1] Universidade Federal do Ceará,Departamento de Matemática
[2] Universidade Federal da Bahia,Instituto de Matemática
[3] Universidade Federal de Alagoas,Instituto de Matemática
来源
Archiv der Mathematik | 2017年 / 109卷
关键词
Einstein 4-manifolds; Nonpositive isotropic curvature; Nonpositive curvature operator; Primary 53C25; Secondary 53C24;
D O I
暂无
中图分类号
学科分类号
摘要
This note is devoted to study the implications of nonpositive isotropic curvature and negative Ricci curvature for Einstein 4-manifolds.
引用
收藏
页码:293 / 300
页数:7
相关论文
共 12 条
[1]  
Brendle S(2010)Einstein manifolds with nonnegative isotropic curvature are locally symmetric Duke Math. J. 151 1-21
[2]  
Costa E(2004)On Einstein four-manifolds J. Geom. Phys. 51 244-255
[3]  
Derdzinsky A(1983)Self-dual Kähler manifolds and Einstein manifolds of dimension four Compositio Math. 49 405-433
[4]  
Fine J(2014)A gauge theoretic approach to Einstein New York J. Math. 20 293-323
[5]  
Kasnov K(1993)-manifolds Duke Math. J. 72 649-672
[6]  
Panov D(1977)Metrics with nonnegative isotropic curvature Invent. Math. 42 225-237
[7]  
Micallef M(2004)On the Chern numbers of surfaces of general type Math. Res. Lett. 11 365-370
[8]  
Wang M(1969)A note on negative isotropic curvature J. Math. Mech. 18 779-786
[9]  
Miyaoka Y(1977)Some remarks on the Gauss-Bonnet formula Proc. Natl. Acad. Sci. USA 74 1798-1799
[10]  
Seshadri H(undefined)Calabi’s conjecture and some new results in algebraic geometry undefined undefined undefined-undefined