Trigonometric approximation of functions in L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-norm

被引:0
作者
Prem Chandra
Varsha Karanjgaokar
机构
[1] Formarly Vikram University,Department of Mathematics
[2] Govt.N.P.G.College of Science,undefined
关键词
Trigonometric Approximation of Functions; Approximation of functions; Degree of Approximation; Cesaro; Norlund methods.; 41A25; 42A10; 40G05;
D O I
10.1007/s10998-021-00397-8
中图分类号
学科分类号
摘要
In this paper, the authors have obtained L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}-approximations of functions f in Lip(α,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\,\mathrm{Lip}\,}}(\alpha ,1) $$\end{document}(0<α≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (0 < \alpha \le 1) $$\end{document} by trigonometrical polynomials Nn(f;x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ N_n (f;x)$$\end{document} whenever the nonnegative and nonincreasing sequence (pn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (p_n )$$\end{document} satisfies certain conditions. This enables the authors to approximate f∈Lip(α,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f \in {{\,\mathrm{Lip}\,}}(\alpha ,p) $$\end{document}(0<α≤1,1≤p<∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0< \alpha \le 1,1\le p < \infty )$$\end{document} in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L_p$$\end{document}-norm by trigonometrical polynomials σnβ(f;x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma _n^\beta (f;x)$$\end{document}(β>0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (\beta > 0)$$\end{document}.
引用
收藏
页码:177 / 185
页数:8
相关论文
共 22 条
[1]  
Chandra P(1990)A note on degree of approximation by Nörlund and Riesz operators Mat. Vesnik 42 9-10
[2]  
Chandra P(2002)Trigonometric approximation of functions in J. Math. Anal. Appl. 275 13-26
[3]  
Khan HH(1974)-norm Indian J. Pure Appl. Math. 5 132-136
[4]  
Leindler L(2005)On the degree of approximation of functions belonging to class J. Math. Anal. Appl. 302 129-136
[5]  
Mc-Fadden L(1942)Trigonometric approximation in Duke Math. J. 9 168-207
[6]  
Mittal ML(2007)-norm J. Math. Anal. Appl. 326 667-676
[7]  
Rhoades BE(2011)Absolute Nörlund summability J. Orissa Math. Soc. 30 13-34
[8]  
Mishra VN(2018)Using infinite matrices to approximate functions of class Demonstr. Math. 51 17-26
[9]  
Singh U(1983) using trigonometric polynomials J. Austral. Math. Soc. Ser. A 34 143-154
[10]  
Mohanty H(2016)Degree of Approximation of Fourier series of functions in Besov space by J. Inequal. Appl 3 529-542