The Eulerian Distribution on the Involutions of the Hyperoctahedral Group is Indeed γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-Positive

被引:0
作者
Jie Cao
Lily Li Liu
机构
[1] Qufu Normal University,School of Mathematical Sciences
关键词
Involution; -Positivity; Hyperoctahedral Group; 05A05; 05A15; 05A20;
D O I
10.1007/s00373-020-02258-6
中图分类号
学科分类号
摘要
Let InB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_n^B$$\end{document} denote the set of the involutions of the hyperoctahedral group Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document}, and let desB(π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{des}_B(\pi )$$\end{document} denote the number of descents of the permutation π∈Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi \in B_n$$\end{document}. We settle a problem of Moustakas which states that InB(t):=∑π∈InBtdesB(π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} I_n^B(t):=\sum _{\pi \in I_n^B}t^{\mathrm{des}_B(\pi )} \end{aligned}$$\end{document}is γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-positive for n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}.
引用
收藏
页码:1943 / 1951
页数:8
相关论文
共 11 条
[1]  
Athanasiadis CA(2018)Gamma-positivity in combinatorics and geometry Sémin. Lothar. Combin. 77 B77i-198
[2]  
Dukes WMB(2007)Permutation statistics on involutions Eur. J. Combin. 28 186-146
[3]  
Gasharov V(1998)On the Neggers–Stanley conjecture and the Eulerian polynomials J. Combin. Theory Ser. A 82 134-1071
[4]  
Guo VJ(2006)The Eulerian distribution on involutions is indeed unimodal J. Combin. Theory Ser. A 113 1061-129
[5]  
Zeng J(2015)The γ-positivity of basic Eulerian polynomials via group actions J. Combin. Theory Ser. A 135 112-1090
[6]  
Lin Z(2019)The Eulerian distribution on the involutions of the Hyperoctahedral group is unimodal Graphs Combin. 35 1077-33
[7]  
Zeng J(2020)Gamma-positivity of variations of Eulerian polynomials J. Comb. 11 1-151
[8]  
Moustakas V-D(2019)The Eulerian distribution on involutions is indeed $\gamma $-positive J. Combin. Theory Ser. A 165 139-undefined
[9]  
Shareshian J(undefined)undefined undefined undefined undefined-undefined
[10]  
Wachs ML(undefined)undefined undefined undefined undefined-undefined