Matrix Model and Stationary Problem in the Toda Chain

被引:0
作者
A. V. Marshakov
机构
[1] RAS,Lebedev Physics Institute
[2] Institute for Theoretical and Experimental Physics,undefined
来源
Theoretical and Mathematical Physics | 2006年 / 146卷
关键词
matrix models; complex geometry; integrable systems;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the stationary problem for the Toda chain and show that the arising geometric data exactly correspond to the multisupport solutions of the one-matrix model with a polynomial potential. We calculate the Hamiltonians and symplectic forms for the first nontrivial examples explicitly and perform the consistency checks. We formulate the corresponding quantum problem and discuss some of its properties and prospects.
引用
收藏
页码:1 / 12
页数:11
相关论文
共 25 条
[1]  
Migdal A. A.(1983)undefined Phys. Rep. 102 199-undefined
[2]  
David F.(1993)undefined Phys. Lett. B 302 403-undefined
[3]  
Cachazo F.(2001)undefined Nucl. Phys. B 603 3-undefined
[4]  
Intriligator K.(2002)undefined Nucl. Phys. B 644 3-undefined
[5]  
Vafa C.(1992)undefined Comm. Pure Appl. Math. 47 437-undefined
[6]  
Dijkgraaf R.(1991)undefined Nucl. Phys. B 357 565-undefined
[7]  
Vafa C.(1995)undefined Phys. Lett. B 355 466-undefined
[8]  
Krichever I.(1976)undefined Funct. Anal. Appl. 10 8-undefined
[9]  
Gerasimov A.(1997)undefined J. Differential Geom. 45 349-undefined
[10]  
Marshakov A.(1996)undefined Modern Phys. Lett. A 11 1169-undefined