Vector Aitken extrapolation method for multilinear PageRank computations

被引:0
作者
Maryam Boubekraoui
Abdeslem Hafid Bentbib
Khalide Jbilou
机构
[1] Cadi Ayyad University,Laboratory LAMAI, Faculty of Sciences and Technologies
[2] ULCO,Laboratory LMPA
[3] University um6p,undefined
来源
Journal of Applied Mathematics and Computing | 2023年 / 69卷
关键词
Tensor; Z-eigenvector; Multilinear PageRank vector; High-order power method; Aitken extrapolation; 65F15; 15A18; 15A69; 65B05; 05C81;
D O I
暂无
中图分类号
学科分类号
摘要
The multilinear PageRank is an extension of the well-known PageRank model. The solution of this model comes as a Z-eigenvector of a non-negative tensor. High-order power method is one of the most widely used ways of computing the multilinear PageRank vector. Even for irreducible and aperiodic tensors, the approach may not converge and when it converges, the convergence may be slow. For larger problems, these two limitations make computing the eigenvectors difficult or impossible. The paper proposes a new method for accelerating the computation of the multilinear PageRank vector using a vector Aitken extrapolation method.
引用
收藏
页码:1145 / 1172
页数:27
相关论文
共 60 条
  • [1] Alves-Pereira AR(2007)Radiation trapping in 1D using the Markov chain formalism: a computational physics project Eur. J. Phys. 28 1105-1124
  • [2] Nunes-Pereira EJ(2017)The spacey random walk: a stochastic process for higher-order data SIAM Rev. 59 321-345
  • [3] Berberan-Santos MN(1975)Généralisations de la transformation de Shanks, de la table de Padé et de l’ Calcolo 12 317-360
  • [4] Benson AR(1998)-algorithme Comput. Netw. ISDN Syst. 30 107-117
  • [5] Gleich DF(1976)The anatomy of a large-scale hypertextual web search engine SIAM J. Numer. Anal. 13 734-752
  • [6] Lim LH(2008)A polynomial extrapolation method for finding limits and antilimits for vector sequences Commun. Math. Sci. 6 507-520
  • [7] Brezinski C(2013)Perron-Frobenius theorem for nonnegative tensors Linear Algebra Appl. 438 4166-4182
  • [8] Brin S(2013)Some variational principles for Z-eigenvalues of nonnegative tensors J. Math. Anal. 408 525-540
  • [9] Page L(2017)On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors Appl. Math. Comput. 303 226-239
  • [10] Cabay S(1984)Markov chains with memory, tensor formulation, and the dynamics of power iteration Rev. Port. Quim. 26 14-20