The role of rationality in integer-programming relaxations

被引:0
作者
Manuel Aprile
Gennadiy Averkov
Marco Di Summa
Christopher Hojny
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica “Tullio Levi
[2] Platz der Deutschen Einheit 1,Civita”
[3] Combinatorial Optimization Group,BTU Cottbus
[4] Eindhoven University of Technology,Senftenberg
来源
Mathematical Programming | 2024年 / 205卷
关键词
Relaxation complexity; Simplex; Irrational numbers; Primary: 90C10; Secondary: 90C57; 52B05; 52B20; 03C10;
D O I
暂无
中图分类号
学科分类号
摘要
For a finite set X⊂Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \subset \mathbb {Z}^d$$\end{document} that can be represented as X=Q∩Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = Q \cap \mathbb {Z}^d$$\end{document} for some polyhedron Q, we call Q a relaxation of X and define the relaxation complexity rc(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {rc}}(X)$$\end{document} of X as the least number of facets among all possible relaxations Q of X. The rational relaxation complexity rcQ(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {rc}}_\mathbb {Q}(X)$$\end{document} restricts the definition of rc(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {rc}}(X)$$\end{document} to rational polyhedra Q. In this article, we focus on X=Δd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = \Delta _d$$\end{document}, the vertex set of the standard simplex, which consists of the null vector and the standard unit vectors in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}. We show that rc(Δd)≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {rc}}(\Delta _d) \le d$$\end{document} for every d≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 5$$\end{document}. That is, since rcQ(Δd)=d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {rc}}_\mathbb {Q}(\Delta _d)=d+1$$\end{document}, irrationality can reduce the minimal size of relaxations. This answers an open question posed by Kaibel and Weltge (Math Program 154(1):407–425, 2015). Moreover, we prove the asymptotic statement rc(Δd)∈O(dlog(d))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {rc}}(\Delta _d) \in O(\nicefrac {d}{\sqrt{\log (d)}})$$\end{document}, which shows that the ratio rc(Δd)rcQ(Δd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nicefrac {{\text {rc}}(\Delta _d)}{{\text {rc}}_\mathbb {Q}(\Delta _d)}$$\end{document} goes to 0, as d→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \rightarrow \infty $$\end{document}.
引用
收藏
页码:745 / 771
页数:26
相关论文
empty
未找到相关数据