The role of rationality in integer-programming relaxations

被引:0
|
作者
Manuel Aprile
Gennadiy Averkov
Marco Di Summa
Christopher Hojny
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica “Tullio Levi
[2] Platz der Deutschen Einheit 1,Civita”
[3] Combinatorial Optimization Group,BTU Cottbus
[4] Eindhoven University of Technology,Senftenberg
来源
Mathematical Programming | 2024年 / 205卷
关键词
Relaxation complexity; Simplex; Irrational numbers; Primary: 90C10; Secondary: 90C57; 52B05; 52B20; 03C10;
D O I
暂无
中图分类号
学科分类号
摘要
For a finite set X⊂Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \subset \mathbb {Z}^d$$\end{document} that can be represented as X=Q∩Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = Q \cap \mathbb {Z}^d$$\end{document} for some polyhedron Q, we call Q a relaxation of X and define the relaxation complexity rc(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {rc}}(X)$$\end{document} of X as the least number of facets among all possible relaxations Q of X. The rational relaxation complexity rcQ(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {rc}}_\mathbb {Q}(X)$$\end{document} restricts the definition of rc(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {rc}}(X)$$\end{document} to rational polyhedra Q. In this article, we focus on X=Δd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = \Delta _d$$\end{document}, the vertex set of the standard simplex, which consists of the null vector and the standard unit vectors in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}. We show that rc(Δd)≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {rc}}(\Delta _d) \le d$$\end{document} for every d≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 5$$\end{document}. That is, since rcQ(Δd)=d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {rc}}_\mathbb {Q}(\Delta _d)=d+1$$\end{document}, irrationality can reduce the minimal size of relaxations. This answers an open question posed by Kaibel and Weltge (Math Program 154(1):407–425, 2015). Moreover, we prove the asymptotic statement rc(Δd)∈O(dlog(d))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {rc}}(\Delta _d) \in O(\nicefrac {d}{\sqrt{\log (d)}})$$\end{document}, which shows that the ratio rc(Δd)rcQ(Δd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nicefrac {{\text {rc}}(\Delta _d)}{{\text {rc}}_\mathbb {Q}(\Delta _d)}$$\end{document} goes to 0, as d→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \rightarrow \infty $$\end{document}.
引用
收藏
页码:745 / 771
页数:26
相关论文
共 50 条
  • [1] The role of rationality in integer-programming relaxations
    Aprile, Manuel
    Averkov, Gennadiy
    Di Summa, Marco
    Hojny, Christopher
    MATHEMATICAL PROGRAMMING, 2024, 205 (1-2) : 745 - 771
  • [2] Integer-Programming Software Systems
    Alper Atamtürk
    Martin W. P. Savelsbergh
    Annals of Operations Research, 2005, 140 : 67 - 124
  • [3] Integer-programming software systems
    Atamtürk, A
    Savelsbergh, MWP
    ANNALS OF OPERATIONS RESEARCH, 2005, 140 (01) : 67 - 124
  • [4] Integer-Programming Model for Plasmonic Waveguide Demultiplexers
    Quansheng Chen
    Yueke Wang
    Yujia Wu
    Plasmonics, 2015, 10 : 329 - 334
  • [5] Integer-Programming Model for Plasmonic Waveguide Demultiplexers
    Chen, Quansheng
    Wang, Yueke
    Wu, Yujia
    PLASMONICS, 2015, 10 (02) : 329 - 334
  • [6] MANIFOLD RELAXATIONS FOR INTEGER PROGRAMMING
    Feng, Zhiguo
    Yiu, Ka-Fai Cedric
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2014, 10 (02) : 557 - 566
  • [7] AN INTERACTIVE HEURISTIC APPROACH FOR MULTIOBJECTIVE INTEGER-PROGRAMMING PROBLEMS
    GABBANI, D
    MAGAZINE, M
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1986, 37 (03) : 285 - 291
  • [8] Pathway mapping operon information: An integer-programming method
    Mao, FL
    Olman, V
    Xu, Y
    Su, ZC
    Chuang, D
    2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 642 - 643
  • [9] A progressive mixed integer-programming method for pump scheduling
    McCormick, G
    Powell, RS
    ADVANCES IN WATER SUPPLY MANAGEMENT, 2003, : 307 - 313
  • [10] Complexity of linear relaxations in integer programming
    Gennadiy Averkov
    Matthias Schymura
    Mathematical Programming, 2022, 194 : 191 - 227