Room-temperature helimagnetism in FeGe thin films

被引:0
作者
S. L. Zhang
I. Stasinopoulos
T. Lancaster
F. Xiao
A. Bauer
F. Rucker
A. A. Baker
A. I. Figueroa
Z. Salman
F. L. Pratt
S. J. Blundell
T. Prokscha
A. Suter
J. Waizner
M. Garst
D. Grundler
G. van der Laan
C. Pfleiderer
T. Hesjedal
机构
[1] Clarendon Laboratory,Department of Physics
[2] University of Oxford,Lehrstuhl für Physik funktionaler Schichtsysteme
[3] Technische Universität München,Centre for Materials Physics
[4] Physik Department,Lehrstuhl für Topologie korrelierter Systeme
[5] Durham University,Magnetic Spectroscopy Group
[6] Technische Universität München,Laboratory for Muon Spin Spectroscopy
[7] Physik Department,ISIS Facility
[8] Diamond Light Source,Institut für Theoretische Physik
[9] Paul Scherrer Institut,Institut für Theoretische Physik
[10] STFC Rutherford Appleton Laboratory,Institute of Materials and Laboratory of Nanoscale Magnetic Materials and Magnonics
[11] Chilton,undefined
[12] Universität zu Köln,undefined
[13] Technische Universität Dresden,undefined
[14] School of Engineering,undefined
[15] École Polytechnique Fédérale de Lausanne,undefined
来源
Scientific Reports | / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Chiral magnets are promising materials for the realisation of high-density and low-power spintronic memory devices. For these future applications, a key requirement is the synthesis of appropriate materials in the form of thin films ordering well above room temperature. Driven by the Dzyaloshinskii-Moriya interaction, the cubic compound FeGe exhibits helimagnetism with a relatively high transition temperature of 278 K in bulk crystals. We demonstrate that this temperature can be enhanced significantly in thin films. Using x-ray scattering and ferromagnetic resonance techniques, we provide unambiguous experimental evidence for long-wavelength helimagnetic order at room temperature and magnetic properties similar to the bulk material. We obtain αintr = 0.0036 ± 0.0003 at 310 K for the intrinsic damping parameter. We probe the dynamics of the system by means of muon-spin rotation, indicating that the ground state is reached via a freezing out of slow dynamics. Our work paves the way towards the fabrication of thin films of chiral magnets that host certain spin whirls, so-called skyrmions, at room temperature and potentially offer integrability into modern electronics.
引用
收藏
相关论文
共 150 条
[1]  
Uchida M(2006)Real-space observation of helical spin order Science 311 359-361
[2]  
Onose Y(2008)Magnetic domain-wall racetrack memory Science 320 190-194
[3]  
Matsui Y(2013)Skyrmions on the track Nat. Nanotech. 8 152-156
[4]  
Tokura Y(2015)Topological computation based on direct magnetic logic communication Sci. Rep. 5 15773-919
[5]  
Parkin SSP(2009)Skyrmion lattice in a chiral magnet Science 323 915-718
[6]  
Hayashi M(2010)Skyrmion lattice in the doped semiconductor Fe Phys. Rev. B 81 041203(R)-201
[7]  
Thomas L(2010)Co Science 330 1648-911
[8]  
Fert A(2011)Si Nat. Phys. 7 713-1080
[9]  
Cros V(2012)Spin transfer torques in MnSi at ultralow current densities Science 336 198-639
[10]  
Sampaio J(2012)Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions Proc. Natl. Acad. Sci. (USA) 109 8856-1152