On the Complexity of Randomly Weighted Multiplicative Voronoi Diagrams

被引:0
|
作者
Sariel Har-Peled
Benjamin Raichel
机构
[1] University of Illinois,Department of Computer Science
来源
Discrete & Computational Geometry | 2015年 / 53卷
关键词
Arrangements; Randomized incremental construction; Voronoi diagrams;
D O I
暂无
中图分类号
学科分类号
摘要
We provide an O(npolylogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n \,\hbox {polylog}\, n)$$\end{document} bound on the expected complexity of the randomly weighted multiplicative Voronoi diagram of a set of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} sites in the plane, where the sites can be either points, interior disjoint convex sets, or other more general objects. Here the randomness is on the weight of the sites, not on their location. This compares favorably with the worst-case complexity of these diagrams, which is quadratic. As a consequence we get an alternative proof to that of Agarwal et al. (Discrete Comput Geom 54:551–582, 2014) of the near linear complexity of the union of randomly expanded disjoint segments or convex sets (with an improved bound on the latter). The technique we develop is elegant and should be applicable to other problems.
引用
收藏
页码:547 / 568
页数:21
相关论文
共 50 条
  • [41] 3-Dimensional Euclidean Voronoi diagrams of lines with a fixed number of orientations
    Koltun, V
    Sharir, M
    SIAM JOURNAL ON COMPUTING, 2003, 32 (03) : 616 - 642
  • [42] Spatial dynamics of team sports exposed by Voronoi diagrams
    Fonseca, Sofia
    Milho, Joao
    Travassos, Bruno
    Araujo, Duarte
    HUMAN MOVEMENT SCIENCE, 2012, 31 (06) : 1652 - 1659
  • [43] A provably complete exploration strategy by constructing Voronoi diagrams
    Kim, Jonghoek
    Zhang, Fumin
    Egerstedt, Magnus
    AUTONOMOUS ROBOTS, 2010, 29 (3-4) : 367 - 380
  • [44] The dual Voronoi diagrams with respect to representational Bregman divergences
    Nielsen, Frank
    Nock, Richard
    2009 6TH INTERNATIONAL SYMPOSIUM ON VORONOI DIAGRAMS (ISVD 2009), 2009, : 71 - +
  • [45] Bifurcations of Voronoi diagrams and its application to braid theory
    Saji, K
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (02) : 249 - 257
  • [46] Voronoi diagrams for polygon-offset distance functions
    Barequet, G
    Dickerson, MT
    Goodrich, MT
    ALGORITHMS AND DATA STRUCTURES, 1997, 1272 : 200 - 209
  • [47] Voronoi diagrams with barriers and on polyhedra for minimal path planning
    Franklin, W. Randolph
    Akman, Varol
    Verrilli, Colin
    VISUAL COMPUTER, 1985, 1 (02): : 133 - 150
  • [48] A provably complete exploration strategy by constructing Voronoi diagrams
    Jonghoek Kim
    Fumin Zhang
    Magnus Egerstedt
    Autonomous Robots, 2010, 29 : 367 - 380
  • [49] Approximating Voronoi diagrams of convex sites in any dimension
    Vleugels, J
    Overmars, M
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1998, 8 (02) : 201 - 221
  • [50] Surveillance area as a multiplicatively weighted Voronoi diagram
    Portela, J. N.
    Alencar, M. S.
    2006 IEEE RADAR CONFERENCE, VOLS 1 AND 2, 2006, : 702 - +