On the Complexity of Randomly Weighted Multiplicative Voronoi Diagrams

被引:0
|
作者
Sariel Har-Peled
Benjamin Raichel
机构
[1] University of Illinois,Department of Computer Science
来源
Discrete & Computational Geometry | 2015年 / 53卷
关键词
Arrangements; Randomized incremental construction; Voronoi diagrams;
D O I
暂无
中图分类号
学科分类号
摘要
We provide an O(npolylogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n \,\hbox {polylog}\, n)$$\end{document} bound on the expected complexity of the randomly weighted multiplicative Voronoi diagram of a set of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} sites in the plane, where the sites can be either points, interior disjoint convex sets, or other more general objects. Here the randomness is on the weight of the sites, not on their location. This compares favorably with the worst-case complexity of these diagrams, which is quadratic. As a consequence we get an alternative proof to that of Agarwal et al. (Discrete Comput Geom 54:551–582, 2014) of the near linear complexity of the union of randomly expanded disjoint segments or convex sets (with an improved bound on the latter). The technique we develop is elegant and should be applicable to other problems.
引用
收藏
页码:547 / 568
页数:21
相关论文
共 50 条
  • [31] Incremental Reconstruction of Generalized Voronoi Diagrams on Grids
    Kalra, Nidhi
    Ferguson, Dave
    Stentz, Anthony
    INTELLIGENT AUTONOMOUS SYSTEMS 9, 2006, : 114 - 123
  • [32] Reconstruction of Voronoi diagrams in inverse potential problems
    Birgin, Ernesto G.
    Laurain, Antoine
    Souza, Danilo R.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2024, 30
  • [33] A note on visibility-constrained Voronoi diagrams
    Aurenhammer, F.
    Su, B.
    Xu, Y-F
    Zhu, B.
    DISCRETE APPLIED MATHEMATICS, 2014, 174 : 52 - 56
  • [34] Voronoi diagrams and offset curves of curvilinear polygons
    Held, M
    COMPUTER-AIDED DESIGN, 1998, 30 (04) : 287 - 300
  • [35] Voronoi Diagrams and Polynomial Root-Finding
    Kalantari, Bahman
    2009 6TH INTERNATIONAL SYMPOSIUM ON VORONOI DIAGRAMS (ISVD 2009), 2009, : 31 - 40
  • [36] Voronoi Diagrams for Senior-Friendly Cities
    Figurska, Marta
    Dawidowicz, Agnieszka
    Zysk, Elzbieta
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (12)
  • [37] Polygon visibility ordering via Voronoi diagrams
    Fukushige, Shinichi
    Suzuki, Hiromasa
    VISUAL COMPUTER, 2007, 23 (07): : 503 - 511
  • [38] The edge labeling of higher order Voronoi diagrams
    Claverol, Merce
    Parrilla, Andrea de las Heras
    Huemer, Clemens
    Martinez-Moraian, Alejandra
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 90 (02) : 515 - 549
  • [39] Incremental reconstruction of generalized Voronoi diagrams on grids
    Kalra, Nidhi
    Ferguson, Dave
    Stentz, Anthony
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (02) : 123 - 128
  • [40] Applying the smoothing Spline when modeling the average monthly temperature of Valle del Cauca using weighted Voronoi diagrams
    Florez, A. J.
    Delgado, J. E.
    Mera, M.
    ENTRE CIENCIA E INGENIERIA, 2013, (14): : 32 - 37