On the Complexity of Randomly Weighted Multiplicative Voronoi Diagrams

被引:0
|
作者
Sariel Har-Peled
Benjamin Raichel
机构
[1] University of Illinois,Department of Computer Science
来源
Discrete & Computational Geometry | 2015年 / 53卷
关键词
Arrangements; Randomized incremental construction; Voronoi diagrams;
D O I
暂无
中图分类号
学科分类号
摘要
We provide an O(npolylogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n \,\hbox {polylog}\, n)$$\end{document} bound on the expected complexity of the randomly weighted multiplicative Voronoi diagram of a set of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} sites in the plane, where the sites can be either points, interior disjoint convex sets, or other more general objects. Here the randomness is on the weight of the sites, not on their location. This compares favorably with the worst-case complexity of these diagrams, which is quadratic. As a consequence we get an alternative proof to that of Agarwal et al. (Discrete Comput Geom 54:551–582, 2014) of the near linear complexity of the union of randomly expanded disjoint segments or convex sets (with an improved bound on the latter). The technique we develop is elegant and should be applicable to other problems.
引用
收藏
页码:547 / 568
页数:21
相关论文
共 50 条
  • [21] VORONOI DIAGRAMS WITHOUT BOUNDING BOXES
    Sang, Erik Tjong Kim
    ISPRS JOINT INTERNATIONAL GEOINFORMATION CONFERENCE 2015, 2015, II-2 (W2): : 235 - 239
  • [22] Community detection by graph Voronoi diagrams
    Deritei, David
    Lazar, Zsolt I.
    Papp, Istvan
    Jarai-Szabo, Ferenc
    Sumi, Robert
    Varga, Levente
    Regan, Erzsebet Ravasz
    Ercsey-Ravasz, Maria
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [23] Voronoi Diagrams and Spatial Analysis of Crime
    de Melo, Silas Nogueira
    Frank, Richard
    Brantingham, Patricia
    PROFESSIONAL GEOGRAPHER, 2017, 69 (04): : 579 - 590
  • [24] Abstract Voronoi Diagrams with Disconnected Regions
    Bohler, Cecilia
    Klein, Rolf
    ALGORITHMS AND COMPUTATION, 2013, 8283 : 306 - 316
  • [25] Furthest site abstract Voronoi diagrams
    Mehlhorn, K
    Meiser, S
    Rasch, R
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2001, 11 (06) : 583 - 616
  • [26] Critical area computation via Voronoi diagrams
    Papadopoulou, E
    Lee, DT
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1999, 18 (04) : 463 - 474
  • [27] A Sweepline Algorithm for Higher Order Voronoi Diagrams
    Zavershynskyi, Maksym
    Papadopoulou, Evanthia
    2013 TENTH INTERNATIONAL SYMPOSIUM ON VORONOI DIAGRAMS IN SCIENCE AND ENGINEERING (ISVD), 2013, : 16 - 22
  • [28] Polygon visibility ordering via Voronoi diagrams
    Shinichi Fukushige
    Hiromasa Suzuki
    The Visual Computer, 2007, 23 : 503 - 511
  • [29] On Higher Order Voronoi Diagrams of Line Segments
    Papadopoulou, Evanthia
    Zavershynskyi, Maksym
    ALGORITHMS AND COMPUTATION, ISAAC 2012, 2012, 7676 : 177 - 186
  • [30] VORONOI DIAGRAMS OF RIGIDLY MOVING SETS OF POINTS
    HUTTENLOCHER, DP
    KEDEM, K
    KLEINBERG, JM
    INFORMATION PROCESSING LETTERS, 1992, 43 (04) : 217 - 223