On the Complexity of Randomly Weighted Multiplicative Voronoi Diagrams

被引:0
|
作者
Sariel Har-Peled
Benjamin Raichel
机构
[1] University of Illinois,Department of Computer Science
来源
Discrete & Computational Geometry | 2015年 / 53卷
关键词
Arrangements; Randomized incremental construction; Voronoi diagrams;
D O I
暂无
中图分类号
学科分类号
摘要
We provide an O(npolylogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n \,\hbox {polylog}\, n)$$\end{document} bound on the expected complexity of the randomly weighted multiplicative Voronoi diagram of a set of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} sites in the plane, where the sites can be either points, interior disjoint convex sets, or other more general objects. Here the randomness is on the weight of the sites, not on their location. This compares favorably with the worst-case complexity of these diagrams, which is quadratic. As a consequence we get an alternative proof to that of Agarwal et al. (Discrete Comput Geom 54:551–582, 2014) of the near linear complexity of the union of randomly expanded disjoint segments or convex sets (with an improved bound on the latter). The technique we develop is elegant and should be applicable to other problems.
引用
收藏
页码:547 / 568
页数:21
相关论文
共 50 条
  • [1] On the Complexity of Randomly Weighted Multiplicative Voronoi Diagrams
    Har-Peled, Sariel
    Raichel, Benjamin
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (03) : 547 - 568
  • [2] Linear Expected Complexity for Directional and Multiplicative Voronoi Diagrams
    Fan, Chenglin
    Raichel, Benjamin
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025, 73 (01) : 1 - 24
  • [3] On the Complexity of Higher Order Abstract Voronoi Diagrams
    Bohler, Cecilia
    Cheilaris, Panagiotis
    Klein, Rolf
    Liu, Chih-Hung
    Papadopoulou, Evanthia
    Zavershynskyi, Maksym
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2013, 7965 : 208 - 219
  • [4] On the complexity of higher order abstract Voronoi diagrams
    Bohler, Cecilia
    Cheilaris, Panagiotis
    Klein, Rolf
    Liu, Chih-Hung
    Papadopoulou, Evanthia
    Zavershynskyi, Maksym
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 48 (08): : 539 - 551
  • [5] The algorithm for creating weighted Voronoi Diagrams based on Cellular Automata
    Wu Xiao-jun
    Luo Xue-fang
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 4630 - +
  • [6] Zone design of specific sizes using adaptive additively weighted Voronoi diagrams
    Moreno-Regidor, Pilar
    Garcia Lopez de Lacalle, Jesus
    Manso-Callejo, Miguel-Angel
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2012, 26 (10) : 1811 - 1829
  • [7] Incremental Voronoi Diagrams
    Sarah R. Allen
    Luis Barba
    John Iacono
    Stefan Langerman
    Discrete & Computational Geometry, 2017, 58 : 822 - 848
  • [8] Incremental Voronoi Diagrams
    Allen, Sarah R.
    Barba, Luis
    Iacono, John
    Langerman, Stefan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (04) : 822 - 848
  • [9] On the average complexity of 3D-Voronoi diagrams of random points on convex polytopes
    Golin, MJ
    Na, HS
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 25 (03): : 197 - 231
  • [10] Sorting helps for Voronoi diagrams
    Chew, LP
    Fortune, S
    ALGORITHMICA, 1997, 18 (02) : 217 - 228