A non-convex economic load dispatch problem with valve loading effect using a hybrid grey wolf optimizer

被引:0
作者
Mohammed Azmi Al-Betar
Mohammed A. Awadallah
Monzer M. Krishan
机构
[1] Al-Balqa Applied University,Department of Information Technology, Al
[2] Al-Aqsa University,Huson University College
[3] Al-Balqa Applied University,Department of Computer Science
来源
Neural Computing and Applications | 2020年 / 32卷
关键词
Economic load dispatch; Grey wolf optimizer; -Hill climbing optimizer; Power system; Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Economic load dispatch (ELD) is a crucial problem in the power system which is tackled by distributing the required generation power through a set of units to minimize the fuel cost required. This distribution is subject to two main constraints: (1) equality and inequality related to power balance and power output, respectively. In the optimization context, ELD is formulated as a non-convex, nonlinear, constrained optimization problem which cannot be easily solved using calculus-based techniques. Several optimization algorithms have been adapted. Due to the complexity nature of ELD search space, the theoretical concepts of these optimization algorithms have been modified or hybridized. In this paper, the grey wolf optimizer (GWO) which is a swarm intelligence is hybridized with β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-hill climbing optimizer (β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}HC) which is a local search algorithm, to improve convergence properties. GWO is very powerful in a wide search, while β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}HC is very powerful in deep search. By combining the wide and deep search ability in a single optimization framework, the balance between the exploration and exploitation is correctly managed. The proposed hybrid algorithm is named β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-GWO which is evaluated using five different test cases of ELD problems: 3 generating units with 850 MW; 13 generating units with 1800 MW; 13 generating units with 2520 MW; 40 generating units with 10,500 MW; and 80 generating units with 21,000 MW. β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-GWO is comparatively measured using 49 comparative methods. The results obtained by β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-GWO outperform others in most test cases. In conclusion, the proposed β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-GWO is proved to be a powerful method for ELD problem or for any other similar problems in the power system domain.
引用
收藏
页码:12127 / 12154
页数:27
相关论文
共 50 条
[21]   Island-Based Harmony Search Algorithm for Non-convex Economic Load Dispatch Problems [J].
Mohammed Azmi Al-Betar .
Journal of Electrical Engineering & Technology, 2021, 16 :1985-2015
[22]   Island-Based Harmony Search Algorithm for Non-convex Economic Load Dispatch Problems [J].
Al-Betar, Mohammed Azmi .
JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2021, 16 (04) :1985-2015
[23]   Solving non-convex economic load dispatch problem via artificial cooperative search algorithm [J].
Kaboli, S. Hr. Aghay ;
Alqallaf, Abdullah K. .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 128 :14-27
[24]   Tournament-based harmony search algorithm for non-convex economic load dispatch problem [J].
Al-Betar, Mohammed Azmi ;
Awadallah, Mohammed A. ;
Khader, Ahamad Tajudin ;
Bolaji, Asaju La'aro .
APPLIED SOFT COMPUTING, 2016, 47 :449-459
[25]   Hybrid Big Bang-Big Crunch Algorithm for Solving Non-convex Economic Load Dispatch Problems [J].
Shahinzadeh, Hossein ;
Moazzami, Majid ;
Fathi, S. Hamid ;
Hosseinian, Seyed Hossein .
2017 2ND CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2017, :48-53
[26]   Deterministic-like solution to the non-convex economic dispatch problem [J].
El-Sayed, Wael T. ;
El-Saadany, Ehab F. ;
Zeineldin, Hatem H. ;
Al-Durra, Ahmed ;
El-Moursi, Mohamed S. .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2021, 15 (03) :420-435
[27]   Enhanced Bat Algorithm for Solving Non-Convex Economic Dispatch Problem [J].
Hussain, Kashif ;
Zhu, William ;
Salleh, Mohd Najib Mohd ;
Ali, Haseeb ;
Talpur, Noreen ;
Naseem, Rashid ;
Ahmad, Arshad ;
Ullah, Ayaz .
RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING (SCDM 2020), 2020, 978 :419-428
[28]   Non-convex economic dispatch with heuristic load patterns, valve point loading effect, prohibited operating zones, ramp-rate limits and spinning reserve constraints using harmony search algorithm [J].
Arul, R. ;
Ravi, G. ;
Velusami, S. .
ELECTRICAL ENGINEERING, 2013, 95 (01) :53-61
[29]   Economic Load Dispatch Problem with Valve-Point Loading Effect Using DNLP Optimization Using GAMS [J].
Reddy, P. Dinakara Prasad ;
Devisree, Ch ;
Naik, M. Vijaya Kumar ;
Prasad, K. Guna .
COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 :149-160
[30]   PSO embedded evolutionary programming technique for non-convex economic load dispatch [J].
Sinha, N ;
Purkayastha, B .
2004 IEEE PES POWER SYSTEMS CONFERENCE & EXPOSITION, VOLS 1 - 3, 2004, :66-71